Cargando…

A corner reflector of graphene Dirac fermions as a phonon-scattering sensor

Dirac fermion optics exploits the refraction of chiral fermions across optics-inspired Klein-tunneling barriers defined by high-transparency p-n junctions. We consider the corner reflector (CR) geometry introduced in optics or radars. We fabricate Dirac fermion CRs using bottom-gate-defined barriers...

Descripción completa

Detalles Bibliográficos
Autores principales: Graef, H., Wilmart, Q., Rosticher, M., Mele, D., Banszerus, L., Stampfer, C., Taniguchi, T., Watanabe, K., Berroir, J.-M., Bocquillon, E., Fève, G., Teo, E. H. T., Plaçais, B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6547877/
https://www.ncbi.nlm.nih.gov/pubmed/31160597
http://dx.doi.org/10.1038/s41467-019-10326-6
Descripción
Sumario:Dirac fermion optics exploits the refraction of chiral fermions across optics-inspired Klein-tunneling barriers defined by high-transparency p-n junctions. We consider the corner reflector (CR) geometry introduced in optics or radars. We fabricate Dirac fermion CRs using bottom-gate-defined barriers in hBN-encapsulated graphene. By suppressing transmission upon multiple internal reflections, CRs are sensitive to minute phonon scattering rates. Here we report on doping-independent CR transmission in quantitative agreement with a simple scattering model including thermal phonon scattering. As a signature of CRs, we observe Fabry-Pérot oscillations at low temperature, consistent with single-path reflections. Finally, we demonstrate high-frequency operation which promotes CRs as fast phonon detectors. Our work establishes the relevance of Dirac fermion optics in graphene and opens a route for its implementation in topological Dirac matter.