Cargando…
Exploring the Limitations of the Shielding Function of Categorization Rules in Task-Switching
Applying categorization rules narrows attention toward the relevant features of a target and helps participants to ignore the irrelevant features of the target. This is called the shielding function of categorization rules. Here we explored the limitation of the shielding function in two task-switch...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6548200/ https://www.ncbi.nlm.nih.gov/pubmed/31191404 http://dx.doi.org/10.3389/fpsyg.2019.01212 |
Sumario: | Applying categorization rules narrows attention toward the relevant features of a target and helps participants to ignore the irrelevant features of the target. This is called the shielding function of categorization rules. Here we explored the limitation of the shielding function in two task-switching experiments. In Experiment 1, we assigned each target a single digital numeral as an additional feature in addition to conventional bivalent features as in the previous task-switching experiments with bivalent tasks. In the first two stages of Experiment 1, half of the participants learned the numeral-response associations and the other half used an alternative numeral-categorization rule to infer the response. Without participants applying conventional task-switching rules, the switching costs disappeared. Moreover, when participants performed tasks by numeral-response associations the bivalent features interfered with response retrieval and caused response-congruency effects, whereas when participants applied the numeral-categorization rule, the bivalent features were shielded away and thereby the response-congruency effects disappeared. In the third stage, in which all participants applied task-switching rules by discriminating between bivalent features (i.e., filling and orientations), we found task-switching costs and response-congruency effects. In Experiment 2, new bivalent features produced stronger interference compared to Experiment 1. As a consequence, participants in both the association group and the numeral-categorization rule group showed significant response-congruency effects in the first two stages, where task-switching rules were not introduced. It follows that the shielding function of categorization rules has limits—strong interference from bivalent features can break down the shielding function. In addition, participants in the association group showed task-switching costs without being informed about the task-switching rules. We propose that strong proactive interference can produce task-switching costs even without the use of task-switching rules. |
---|