Cargando…
Genome-wide identification, characterisation and expression profiling of the ubiquitin-proteasome genes in Biomphalaria glabrata
BACKGROUND: Biomphalaria glabrata is the major species used for the study of schistosomiasis-related parasite-host relationships, and understanding its gene regulation may aid in this endeavor. The ubiquitin-proteasome system (UPS) performs post-translational regulation in order to maintain cellular...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Instituto Oswaldo Cruz, Ministério da Saúde
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6548493/ https://www.ncbi.nlm.nih.gov/pubmed/31166481 http://dx.doi.org/10.1590/0074-02760190052 |
_version_ | 1783423851402625024 |
---|---|
author | Portilho, Laysa Gomes Duarte, Bruna Custódio Dias Queiroz, Fábio Ribeiro Ribeiro, Thales Henrique Cherubino Jeremias, Wander de Jesus Babá, Elio Hideo Coelho, Paulo Marcos Zech Morais, Enyara Rezende Cabral, Fernanda Janku Caldeira, Roberta Lima Gomes, Matheus de Souza |
author_facet | Portilho, Laysa Gomes Duarte, Bruna Custódio Dias Queiroz, Fábio Ribeiro Ribeiro, Thales Henrique Cherubino Jeremias, Wander de Jesus Babá, Elio Hideo Coelho, Paulo Marcos Zech Morais, Enyara Rezende Cabral, Fernanda Janku Caldeira, Roberta Lima Gomes, Matheus de Souza |
author_sort | Portilho, Laysa Gomes |
collection | PubMed |
description | BACKGROUND: Biomphalaria glabrata is the major species used for the study of schistosomiasis-related parasite-host relationships, and understanding its gene regulation may aid in this endeavor. The ubiquitin-proteasome system (UPS) performs post-translational regulation in order to maintain cellular protein homeostasis and is related to several mechanisms, including immune responses. OBJECTIVE: The aims of this work were to identify and characterise the putative genes and proteins involved in UPS using bioinformatic tools and also their expression on different tissues of B. glabrata. METHODS: The putative genes and proteins of UPS in B. glabrata were predicted using BLASTp and as queries reference proteins from model organism. We characterised these putative proteins using PFAM and CDD software describing the conserved domains and active sites. The phylogenetic analysis was performed using ClustalX2 and MEGA5.2. Expression evaluation was performed from 12 snail tissues using RPKM. FINDINGS: 119 sequences involved in the UPS in B. glabrata were identified, which 86 have been related to the ubiquitination pathway and 33 to proteasome. In addition, the conserved domains found were associated with the ubiquitin family, UQ_con, HECT, U-box and proteasome. The main active sites were lysine and cysteine residues. Lysines are responsible and the starting point for the formation of polyubiquitin chains, while the cysteine residues of the enzymes are responsible for binding to ubiquitin. The phylogenetic analysis showed an organised distribution between the organisms and the clades of the sequences, corresponding to the tree of life of the animals, for all groups of sequences analysed. The ubiquitin sequence was the only one with a high expression profile found in all libraries, inferring its wide range of performance. MAIN CONCLUSIONS: Our results show the presence, conservation and expression profile of the UPS in this mollusk, providing a basis and new knowledge for other studies involving this system. Due to the importance of the UPS and B. glabrata, this work may influence the search for new methodologies for the control of schistosomiasis. |
format | Online Article Text |
id | pubmed-6548493 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Instituto Oswaldo Cruz, Ministério da Saúde |
record_format | MEDLINE/PubMed |
spelling | pubmed-65484932019-06-14 Genome-wide identification, characterisation and expression profiling of the ubiquitin-proteasome genes in Biomphalaria glabrata Portilho, Laysa Gomes Duarte, Bruna Custódio Dias Queiroz, Fábio Ribeiro Ribeiro, Thales Henrique Cherubino Jeremias, Wander de Jesus Babá, Elio Hideo Coelho, Paulo Marcos Zech Morais, Enyara Rezende Cabral, Fernanda Janku Caldeira, Roberta Lima Gomes, Matheus de Souza Mem Inst Oswaldo Cruz Original Article BACKGROUND: Biomphalaria glabrata is the major species used for the study of schistosomiasis-related parasite-host relationships, and understanding its gene regulation may aid in this endeavor. The ubiquitin-proteasome system (UPS) performs post-translational regulation in order to maintain cellular protein homeostasis and is related to several mechanisms, including immune responses. OBJECTIVE: The aims of this work were to identify and characterise the putative genes and proteins involved in UPS using bioinformatic tools and also their expression on different tissues of B. glabrata. METHODS: The putative genes and proteins of UPS in B. glabrata were predicted using BLASTp and as queries reference proteins from model organism. We characterised these putative proteins using PFAM and CDD software describing the conserved domains and active sites. The phylogenetic analysis was performed using ClustalX2 and MEGA5.2. Expression evaluation was performed from 12 snail tissues using RPKM. FINDINGS: 119 sequences involved in the UPS in B. glabrata were identified, which 86 have been related to the ubiquitination pathway and 33 to proteasome. In addition, the conserved domains found were associated with the ubiquitin family, UQ_con, HECT, U-box and proteasome. The main active sites were lysine and cysteine residues. Lysines are responsible and the starting point for the formation of polyubiquitin chains, while the cysteine residues of the enzymes are responsible for binding to ubiquitin. The phylogenetic analysis showed an organised distribution between the organisms and the clades of the sequences, corresponding to the tree of life of the animals, for all groups of sequences analysed. The ubiquitin sequence was the only one with a high expression profile found in all libraries, inferring its wide range of performance. MAIN CONCLUSIONS: Our results show the presence, conservation and expression profile of the UPS in this mollusk, providing a basis and new knowledge for other studies involving this system. Due to the importance of the UPS and B. glabrata, this work may influence the search for new methodologies for the control of schistosomiasis. Instituto Oswaldo Cruz, Ministério da Saúde 2019-06-03 /pmc/articles/PMC6548493/ /pubmed/31166481 http://dx.doi.org/10.1590/0074-02760190052 Text en https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License |
spellingShingle | Original Article Portilho, Laysa Gomes Duarte, Bruna Custódio Dias Queiroz, Fábio Ribeiro Ribeiro, Thales Henrique Cherubino Jeremias, Wander de Jesus Babá, Elio Hideo Coelho, Paulo Marcos Zech Morais, Enyara Rezende Cabral, Fernanda Janku Caldeira, Roberta Lima Gomes, Matheus de Souza Genome-wide identification, characterisation and expression profiling of the ubiquitin-proteasome genes in Biomphalaria glabrata |
title | Genome-wide identification, characterisation and expression profiling
of the ubiquitin-proteasome genes in Biomphalaria glabrata
|
title_full | Genome-wide identification, characterisation and expression profiling
of the ubiquitin-proteasome genes in Biomphalaria glabrata
|
title_fullStr | Genome-wide identification, characterisation and expression profiling
of the ubiquitin-proteasome genes in Biomphalaria glabrata
|
title_full_unstemmed | Genome-wide identification, characterisation and expression profiling
of the ubiquitin-proteasome genes in Biomphalaria glabrata
|
title_short | Genome-wide identification, characterisation and expression profiling
of the ubiquitin-proteasome genes in Biomphalaria glabrata
|
title_sort | genome-wide identification, characterisation and expression profiling
of the ubiquitin-proteasome genes in biomphalaria glabrata |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6548493/ https://www.ncbi.nlm.nih.gov/pubmed/31166481 http://dx.doi.org/10.1590/0074-02760190052 |
work_keys_str_mv | AT portilholaysagomes genomewideidentificationcharacterisationandexpressionprofilingoftheubiquitinproteasomegenesinbiomphalariaglabrata AT duartebrunacustodiodias genomewideidentificationcharacterisationandexpressionprofilingoftheubiquitinproteasomegenesinbiomphalariaglabrata AT queirozfabioribeiro genomewideidentificationcharacterisationandexpressionprofilingoftheubiquitinproteasomegenesinbiomphalariaglabrata AT ribeirothaleshenriquecherubino genomewideidentificationcharacterisationandexpressionprofilingoftheubiquitinproteasomegenesinbiomphalariaglabrata AT jeremiaswanderdejesus genomewideidentificationcharacterisationandexpressionprofilingoftheubiquitinproteasomegenesinbiomphalariaglabrata AT babaeliohideo genomewideidentificationcharacterisationandexpressionprofilingoftheubiquitinproteasomegenesinbiomphalariaglabrata AT coelhopaulomarcoszech genomewideidentificationcharacterisationandexpressionprofilingoftheubiquitinproteasomegenesinbiomphalariaglabrata AT moraisenyararezende genomewideidentificationcharacterisationandexpressionprofilingoftheubiquitinproteasomegenesinbiomphalariaglabrata AT cabralfernandajanku genomewideidentificationcharacterisationandexpressionprofilingoftheubiquitinproteasomegenesinbiomphalariaglabrata AT caldeirarobertalima genomewideidentificationcharacterisationandexpressionprofilingoftheubiquitinproteasomegenesinbiomphalariaglabrata AT gomesmatheusdesouza genomewideidentificationcharacterisationandexpressionprofilingoftheubiquitinproteasomegenesinbiomphalariaglabrata |