Cargando…
Evaluation of Enhanced Learning Techniques for Segmenting Ischaemic Stroke Lesions in Brain Magnetic Resonance Perfusion Images Using a Convolutional Neural Network Scheme
Magnetic resonance (MR) perfusion imaging non-invasively measures cerebral perfusion, which describes the blood's passage through the brain's vascular network. Therefore, it is widely used to assess cerebral ischaemia. Convolutional Neural Networks (CNN) constitute the state-of-the-art met...
Autores principales: | Pérez Malla, Carlos Uziel, Valdés Hernández, Maria del C., Rachmadi, Muhammad Febrian, Komura, Taku |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6548861/ https://www.ncbi.nlm.nih.gov/pubmed/31191282 http://dx.doi.org/10.3389/fninf.2019.00033 |
Ejemplares similares
-
Dilated Saliency U-Net for White Matter Hyperintensities Segmentation Using Irregularity Age Map
por: Jeong, Yunhee, et al.
Publicado: (2019) -
Automatic spatial estimation of white matter hyperintensities evolution in brain MRI using disease evolution predictor deep neural networks
por: Rachmadi, Muhammad Febrian, et al.
Publicado: (2020) -
White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks
por: Guerrero, R., et al.
Publicado: (2017) -
Identification of the presence of ischaemic stroke lesions by means of texture analysis on brain magnetic resonance images
por: Ortiz-Ramón, Rafael, et al.
Publicado: (2019) -
Exploring the performance of implicit neural representations for brain image registration
por: Byra, Michal, et al.
Publicado: (2023)