Cargando…

Controlling Injection Barriers for Ambipolar 2D Semiconductors via Quasi‐van der Waals Contacts

Barriers that charge carriers experience while injecting into channels play a crucial role on determining the device properties of van der Waals semiconductors (vdWS). Among various strategies to control these barriers, inserting a graphene layer underneath bulk metal may be a promising choice, whic...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Junjun, Wang, Feng, Wang, Zhenxing, Cheng, Ruiqing, Yin, Lei, Wen, Yao, Zhang, Yu, Li, Ningning, Zhan, Xueying, Xiao, Xiangheng, Feng, Liping, He, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6548948/
https://www.ncbi.nlm.nih.gov/pubmed/31179206
http://dx.doi.org/10.1002/advs.201801841
Descripción
Sumario:Barriers that charge carriers experience while injecting into channels play a crucial role on determining the device properties of van der Waals semiconductors (vdWS). Among various strategies to control these barriers, inserting a graphene layer underneath bulk metal may be a promising choice, which is still lacking experimental verification. Here, it is demonstrated that graphene/metal hybrid structures can form quasi‐van der Waals contacts (q‐vdWC) to ambipolar vdWS, combining the advantages of individual metal and graphene contacts together. A new analysis model is adopted to define the barriers and to extract the barrier heights in ambipolar vdWS. The devices with q‐vdWC show significantly reduced Schottky barrier heights and thermionic field emission activation energies, ability of screening the influence from substrate, and Fermi level unpinning effect. Furthermore, phototransistors with these special contacts exhibit enhanced performances. The proposed graphene/metal q‐vdWC may be an effective strategy to approach the Schottky–Mott limit for vdWS.