Cargando…
Stimulation and Repair of Peripheral Nerves Using Bioadhesive Graft‐Antenna
An original wireless stimulator for peripheral nerves based on a metal loop (diameter ≈1 mm) that is powered by a transcranial magnetic stimulator (TMS) and does not require circuitry components is reported. The loop can be integrated in a chitosan scaffold that functions as a graft when applied ont...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6548953/ https://www.ncbi.nlm.nih.gov/pubmed/31179205 http://dx.doi.org/10.1002/advs.201801212 |
Sumario: | An original wireless stimulator for peripheral nerves based on a metal loop (diameter ≈1 mm) that is powered by a transcranial magnetic stimulator (TMS) and does not require circuitry components is reported. The loop can be integrated in a chitosan scaffold that functions as a graft when applied onto transected nerves (graft‐antenna). The graft‐antenna is bonded to rat sciatic nerves by a laser without sutures; it does not migrate after implantation and is able to trigger steady compound muscle action potentials for 12 weeks (CMAP ≈1.3 mV). Eight weeks postoperatively, axon regeneration is facilitated in transected nerves that are repaired with the graft‐antenna and stimulated by the TMS for 1 h per week. The graft‐antenna is an innovative and minimally‐invasive device that functions concurrently as a wireless stimulator and adhesive scaffold for nerve repair. |
---|