Cargando…

Factors affecting formation of adventitious branches in the seaweeds Fucus vesiculosus and F. radicans

BACKGROUND: In the brackish Baltic Sea, shedding of adventitious branches is central to asexual recruitment of new thalli in the brown algae Fucus vesiculosus and F. radicans. To test which factors influence the formation of adventitious branches in brackish and in more marine conditions, we sampled...

Descripción completa

Detalles Bibliográficos
Autores principales: Kinnby, Alexandra, Pereyra, Ricardo T., Havenhand, Jonathan N., De Wit, Pierre, Jonsson, Per R., Pavia, Henrik, Johannesson, Kerstin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6549257/
https://www.ncbi.nlm.nih.gov/pubmed/31164112
http://dx.doi.org/10.1186/s12898-019-0239-7
Descripción
Sumario:BACKGROUND: In the brackish Baltic Sea, shedding of adventitious branches is central to asexual recruitment of new thalli in the brown algae Fucus vesiculosus and F. radicans. To test which factors influence the formation of adventitious branches in brackish and in more marine conditions, we sampled 29 Fucus sites in the Baltic Sea (salinity 3–11) and 18 sites from the Danish straits, Kattegat, Skagerrak, and the North Sea (salinity 15–35). Separately for each area, we used structural equation modelling to determine which of eight predictor factors (phosphate, nitrate, chlorophyll-a (as a proxy for turbidity), temperature, salinity, oxygen, grazing pressure, and thallus area) best explained observed numbers of adventitious branches. RESULTS: In more marine waters, high yearly average values of phosphate, salinity and turbidity had positive effects on the formation of adventitious branches. In brackish-waters, however, high numbers of adventitious branches were found in areas with low yearly average values of temperature, salinity and oxygen. Grazing intensity had no significant effect in either of the two study areas, contrasting findings from studies in other areas. In areas with both sexually and asexually reproducing Fucus individuals, clones had on average more adventitious branches than unique genotypes, although there was strong variation among clonal lineages. CONCLUSION: This study is the first to investigate multiple potential drivers of formation of adventitious branches in natural populations of Fucus. Our results suggest that several different factors synergistically and antagonistically affect the growth of adventitious branches in a complex way, and that the same factor (salinity) can have opposing effects in different areas. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12898-019-0239-7) contains supplementary material, which is available to authorized users.