Cargando…

Establishment of the falling film evaporation model and correlation of the overall heat transfer coefficient

In order to study the heat transfer of the falling film evaporator with phase change on both sides, in this paper we built the mathematical model and the physical model where the liquid film inside the tube is laminar and turbulent. The film thickness of the condensate at different axial positions,...

Descripción completa

Detalles Bibliográficos
Autores principales: Fang, Jing, Li, Kaixuan, Diao, Mengyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6549946/
https://www.ncbi.nlm.nih.gov/pubmed/31218055
http://dx.doi.org/10.1098/rsos.190135
Descripción
Sumario:In order to study the heat transfer of the falling film evaporator with phase change on both sides, in this paper we built the mathematical model and the physical model where the liquid film inside the tube is laminar and turbulent. The film thickness of the condensate at different axial positions, total condensate volume and velocity distribution, and temperature distribution of condensate outside the tube can be obtained by calculating the proposed model. Meanwhile, the liquid film thickness, velocity distribution and temperature distribution inside the tube were obtained by numerical simulation by considering the influence of the liquid film with different compositions on the heat transfer during fluid flow. With ethanol–water as the system, the overall heat transfer coefficient and heat transfer quantity of the falling film evaporator were obtained by the calculation of the model. The accuracy of the proposed model was confirmed by experiments. The model and the calculation of heat transfer proposed in this paper have enormous significance for the basic data and theoretical guidance of the heat transfer performance prediction and operational optimization of the evaporator.