Cargando…

Electrochemical characterization of manganese oxides as a water oxidation catalyst in proton exchange membrane electrolysers

The performance of four polymorphs of manganese (Mn) dioxides as the catalyst for the oxygen evolution reaction (OER) in proton exchange membrane (PEM) electrolysers was examined. The comparison of the activity between Mn oxides/carbon (Mn/C), iridium oxide/carbon (Ir/C) and platinum/carbon (Pt/C) u...

Descripción completa

Detalles Bibliográficos
Autores principales: Hayashi, Toru, Bonnet-Mercier, Nadège, Yamaguchi, Akira, Suetsugu, Kazumasa, Nakamura, Ryuhei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6549974/
https://www.ncbi.nlm.nih.gov/pubmed/31218053
http://dx.doi.org/10.1098/rsos.190122
Descripción
Sumario:The performance of four polymorphs of manganese (Mn) dioxides as the catalyst for the oxygen evolution reaction (OER) in proton exchange membrane (PEM) electrolysers was examined. The comparison of the activity between Mn oxides/carbon (Mn/C), iridium oxide/carbon (Ir/C) and platinum/carbon (Pt/C) under the same condition in PEM electrolysers showed that the γ-MnO(2)/C exhibited a voltage efficiency for water electrolysis comparable to the case with Pt/C, while lower than the case with the benchmark Ir/C OER catalyst. The rapid decrease in the voltage efficiency was observed for a PEM electrolyser with the Mn/C, as indicated by the voltage shift from 1.7 to 1.9 V under the galvanostatic condition. The rapid deactivation was also observed when Pt/C was used, indicating that the instability of PEM electrolysis with Mn/C is probably due to the oxidative decomposition of carbon supports. The OER activity of the four types of Mn oxides was also evaluated at acidic pH in a three-electrode system. It was found that the OER activity trends of the Mn oxides evaluated in an acidic aqueous electrolyte were distinct from those in PEM electrolysers, demonstrating the importance of the evaluation of OER catalysts in a real device condition for future development of noble-metal-free PEM electrolysers.