Cargando…
Deep learning predicts hip fracture using confounding patient and healthcare variables
Hip fractures are a leading cause of death and disability among older adults. Hip fractures are also the most commonly missed diagnosis on pelvic radiographs, and delayed diagnosis leads to higher cost and worse outcomes. Computer-aided diagnosis (CAD) algorithms have shown promise for helping radio...
Autores principales: | Badgeley, Marcus A., Zech, John R., Oakden-Rayner, Luke, Glicksberg, Benjamin S., Liu, Manway, Gale, William, McConnell, Michael V., Percha, Bethany, Snyder, Thomas M., Dudley, Joel T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6550136/ https://www.ncbi.nlm.nih.gov/pubmed/31304378 http://dx.doi.org/10.1038/s41746-019-0105-1 |
Ejemplares similares
-
CANDI: an R package and Shiny app for annotating radiographs and evaluating computer-aided diagnosis
por: Badgeley, Marcus A, et al.
Publicado: (2019) -
Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: A cross-sectional study
por: Zech, John R., et al.
Publicado: (2018) -
Identifying Acute Low Back Pain Episodes in Primary Care Practice From Clinical Notes: Observational Study
por: Miotto, Riccardo, et al.
Publicado: (2020) -
Translational bioinformatics in the era of real-time biomedical, health care and wellness data streams
por: Shameer, Khader, et al.
Publicado: (2017) -
Designing Robust N-of-1 Studies for Precision Medicine: Simulation Study and Design Recommendations
por: Percha, Bethany, et al.
Publicado: (2019)