Cargando…
VetTag: improving automated veterinary diagnosis coding via large-scale language modeling
Unlike human medical records, most of the veterinary records are free text without standard diagnosis coding. The lack of systematic coding is a major barrier to the growing interest in leveraging veterinary records for public health and translational research. Recent machine learning effort is limi...
Autores principales: | Zhang, Yuhui, Nie, Allen, Zehnder, Ashley, Page, Rodney L., Zou, James |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6550141/ https://www.ncbi.nlm.nih.gov/pubmed/31304381 http://dx.doi.org/10.1038/s41746-019-0113-1 |
Ejemplares similares
-
DeepTag: inferring diagnoses from veterinary clinical notes
por: Nie, Allen, et al.
Publicado: (2018) -
Automated vetting of radiology referrals: exploring natural language processing and traditional machine learning approaches
por: Potočnik, Jaka, et al.
Publicado: (2022) -
Utilization and acceptance of virtual patients in veterinary basic sciences – the vetVIP-project
por: Kleinsorgen, Christin, et al.
Publicado: (2017) -
Building the European Antimicrobial Resistance Surveillance network in veterinary medicine (EARS-Vet)
por: Mader, Rodolphe, et al.
Publicado: (2021) -
Designing a National Veterinary Prescribing Champion Programme for Welsh Veterinary Practices: The Arwain Vet Cymru Project
por: Rees, Gwen M., et al.
Publicado: (2021)