Cargando…
Advanced machine learning in action: identification of intracranial hemorrhage on computed tomography scans of the head with clinical workflow integration
Intracranial hemorrhage (ICH) requires prompt diagnosis to optimize patient outcomes. We hypothesized that machine learning algorithms could automatically analyze computed tomography (CT) of the head, prioritize radiology worklists and reduce time to diagnosis of ICH. 46,583 head CTs (~2 million ima...
Autores principales: | Arbabshirani, Mohammad R., Fornwalt, Brandon K., Mongelluzzo, Gino J., Suever, Jonathan D., Geise, Brandon D., Patel, Aalpen A., Moore, Gregory J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6550144/ https://www.ncbi.nlm.nih.gov/pubmed/31304294 http://dx.doi.org/10.1038/s41746-017-0015-z |
Ejemplares similares
-
Characterization of the size and location of dyssynchronous regions in patients undergoing CRT
por: Suever, Jonathan, et al.
Publicado: (2012) -
A method to determine regional mechanical left ventricular dyssynchrony based on high temporal resolution short axis SSFP cine images
por: Suever, Jonathan, et al.
Publicado: (2012) -
Benefits of Low-Dose CT Scan of Head for Patients With Intracranial Hemorrhage
por: Wu, Dan, et al.
Publicado: (2020) -
Corrigendum to “Benefits of Low-Dose CT Scan of Head for Patients with Intracranial Hemorrhage”
Publicado: (2021) -
Using Adipose Measures from Health Care Provider-Based Imaging Data for Discovery
por: Cha, Elliot D. K., et al.
Publicado: (2018)