Cargando…
Machine-learned epidemiology: real-time detection of foodborne illness at scale
Machine learning has become an increasingly powerful tool for solving complex problems, and its application in public health has been underutilized. The objective of this study is to test the efficacy of a machine-learned model of foodborne illness detection in a real-world setting. To this end, we...
Autores principales: | Sadilek, Adam, Caty, Stephanie, DiPrete, Lauren, Mansour, Raed, Schenk, Tom, Bergtholdt, Mark, Jha, Ashish, Ramaswami, Prem, Gabrilovich, Evgeniy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6550174/ https://www.ncbi.nlm.nih.gov/pubmed/31304318 http://dx.doi.org/10.1038/s41746-018-0045-1 |
Ejemplares similares
-
Health Department Use of Social Media to Identify Foodborne Illness — Chicago, Illinois, 2013–2014
por: Harris, Jenine K., et al.
Publicado: (2014) -
Lymelight: forecasting Lyme disease risk using web search data
por: Sadilek, Adam, et al.
Publicado: (2020) -
Perspectives in Foodborne Illness
por: Keusch, Gerald T.
Publicado: (2013) -
Epidemiology, Prevention, and Control of the Number One Foodborne Illness: Human Norovirus
por: DiCaprio, Erin, et al.
Publicado: (2013) -
Evaluating the Implementation of a Twitter-Based Foodborne Illness Reporting Tool in the City of St. Louis Department of Health
por: Harris, Jenine K., et al.
Publicado: (2018)