Cargando…
A principled machine learning framework improves accuracy of stage II colorectal cancer prognosis
Accurate prognosis is fundamental in planning an appropriate therapy for cancer patients. Consequent to the heterogeneity of the disease, intra- and inter-pathologist variability, and the inherent limitations of current pathological reporting systems, patient outcome varies considerably within simil...
Autores principales: | Dimitriou, Neofytos, Arandjelović, Ognjen, Harrison, David J., Caie, Peter D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6550189/ https://www.ncbi.nlm.nih.gov/pubmed/31304331 http://dx.doi.org/10.1038/s41746-018-0057-x |
Ejemplares similares
-
Deep Learning for Whole Slide Image Analysis: An Overview
por: Dimitriou, Neofytos, et al.
Publicado: (2019) -
Corrigendum: Deep Learning for Whole Slide Image Analysis: An Overview
por: Dimitriou, Neofytos, et al.
Publicado: (2020) -
Assessment of Immunological Features in Muscle-Invasive Bladder Cancer Prognosis Using Ensemble Learning
por: Gavriel, Christos G., et al.
Publicado: (2021) -
How Good is the Science That Informs Government Policy? A Lesson From the U.K.’s Response to 2020 CoV-2 Outbreak
por: Cooper, Jessica, et al.
Publicado: (2021) -
Reproducibility of deep learning in digital pathology whole slide image analysis
por: Fell, Christina, et al.
Publicado: (2022)