Cargando…

Detecting neurodegenerative disorders from web search signals

Neurodegenerative disorders, such as Parkinson’s disease (PD) and Alzheimer’s disease (AD), are important public health problems warranting early detection. We trained machine-learned classifiers on the longitudinal search logs of 31,321,773 search engine users to automatically detect neurodegenerat...

Descripción completa

Detalles Bibliográficos
Autores principales: White, Ryen W., Doraiswamy, P. Murali, Horvitz, Eric
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6550228/
https://www.ncbi.nlm.nih.gov/pubmed/31304293
http://dx.doi.org/10.1038/s41746-018-0016-6
Descripción
Sumario:Neurodegenerative disorders, such as Parkinson’s disease (PD) and Alzheimer’s disease (AD), are important public health problems warranting early detection. We trained machine-learned classifiers on the longitudinal search logs of 31,321,773 search engine users to automatically detect neurodegenerative disorders. Several digital phenotypes with high discriminatory weights for detecting these disorders are identified. Classifier sensitivities for PD detection are 94.2/83.1/42.0/34.6% at false positive rates (FPRs) of 20/10/1/0.1%, respectively. Preliminary analysis shows similar performance for AD detection. Subject to further refinement of accuracy and reproducibility, these findings show the promise of web search digital phenotypes as adjunctive screening tools for neurodegenerative disorders.