Cargando…
Predicting scheduled hospital attendance with artificial intelligence
Failure to attend scheduled hospital appointments disrupts clinical management and consumes resource estimated at £1 billion annually in the United Kingdom National Health Service alone. Accurate stratification of absence risk can maximize the yield of preventative interventions. The wide multiplici...
Autores principales: | Nelson, Amy, Herron, Daniel, Rees, Geraint, Nachev, Parashkev |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6550247/ https://www.ncbi.nlm.nih.gov/pubmed/31304373 http://dx.doi.org/10.1038/s41746-019-0103-3 |
Ejemplares similares
-
Redefining the research hospital
por: Nachev, Parashkev, et al.
Publicado: (2019) -
The Value of Data: Applying a Public Value Model to the English National Health Service
por: Wilson, James, et al.
Publicado: (2020) -
GeoSPM: Geostatistical parametric mapping for medicine
por: Engleitner, Holger, et al.
Publicado: (2022) -
Representational ethical model calibration
por: Carruthers, Robert, et al.
Publicado: (2022) -
Lost in translation
por: Nachev, Parashkev, et al.
Publicado: (2019)