Cargando…
Differential requirements of protein geranylgeranylation for the virulence of human pathogenic fungi
Protein prenylation is a crucial post-translational modification largely mediated by two heterodimeric enzyme complexes, farnesyltransferase and geranylgeranyltransferase type-I (GGTase-I), each composed of a shared α-subunit and a unique β-subunit. GGTase-I enzymes are validated drug targets that c...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6550545/ https://www.ncbi.nlm.nih.gov/pubmed/31131706 http://dx.doi.org/10.1080/21505594.2019.1620063 |
_version_ | 1783424203560583168 |
---|---|
author | Souza, Ana Camila Oliveira Al Abdallah, Qusai DeJarnette, Kaci Martin-Vicente, Adela Nywening, Ashley V. DeJarnette, Christian Sansevere, Emily A. Ge, Wenbo Palmer, Glen E. Fortwendel, Jarrod R |
author_facet | Souza, Ana Camila Oliveira Al Abdallah, Qusai DeJarnette, Kaci Martin-Vicente, Adela Nywening, Ashley V. DeJarnette, Christian Sansevere, Emily A. Ge, Wenbo Palmer, Glen E. Fortwendel, Jarrod R |
author_sort | Souza, Ana Camila Oliveira |
collection | PubMed |
description | Protein prenylation is a crucial post-translational modification largely mediated by two heterodimeric enzyme complexes, farnesyltransferase and geranylgeranyltransferase type-I (GGTase-I), each composed of a shared α-subunit and a unique β-subunit. GGTase-I enzymes are validated drug targets that contribute to virulence in Cryptococcus neoformans and to the yeast-to-hyphal transition in Candida albicans. Therefore, we sought to investigate the importance of the α-subunit, RamB, and the β-subunit, Cdc43, of the A. fumigatus GGTase-I complex to hyphal growth and virulence. Deletion of cdc43 resulted in impaired hyphal morphogenesis and thermo-sensitivity, which was exacerbated during growth in rich media. The Δcdc43 mutant also displayed hypersensitivity to cell wall stress agents and to cell wall synthesis inhibitors, suggesting alterations of cell wall biosynthesis or stress signaling. In support of this, analyses of cell wall content revealed decreased amounts of β-glucan in the Δcdc43 strain. Despite strong in vitro phenotypes, the Δcdc43 mutant was fully virulent in two models of murine invasive aspergillosis, similar to the control strain. We further found that a strain expressing the α-subunit gene, ramB, from a tetracycline-inducible promoter was inviable under non-inducing in vitro growth conditions and was virtually avirulent in both mouse models. Lastly, virulence studies using C. albicans strains with tetracycline-repressible RAM2 or CDC43 expression revealed reduced pathogenicity associated with downregulation of either gene in a murine model of disseminated infection. Together, these findings indicate a differential requirement for protein geranylgeranylation for fungal virulence, and further inform the selection of specific prenyltransferases as promising antifungal drug targets for each pathogen. |
format | Online Article Text |
id | pubmed-6550545 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Taylor & Francis |
record_format | MEDLINE/PubMed |
spelling | pubmed-65505452019-06-17 Differential requirements of protein geranylgeranylation for the virulence of human pathogenic fungi Souza, Ana Camila Oliveira Al Abdallah, Qusai DeJarnette, Kaci Martin-Vicente, Adela Nywening, Ashley V. DeJarnette, Christian Sansevere, Emily A. Ge, Wenbo Palmer, Glen E. Fortwendel, Jarrod R Virulence Research Paper Protein prenylation is a crucial post-translational modification largely mediated by two heterodimeric enzyme complexes, farnesyltransferase and geranylgeranyltransferase type-I (GGTase-I), each composed of a shared α-subunit and a unique β-subunit. GGTase-I enzymes are validated drug targets that contribute to virulence in Cryptococcus neoformans and to the yeast-to-hyphal transition in Candida albicans. Therefore, we sought to investigate the importance of the α-subunit, RamB, and the β-subunit, Cdc43, of the A. fumigatus GGTase-I complex to hyphal growth and virulence. Deletion of cdc43 resulted in impaired hyphal morphogenesis and thermo-sensitivity, which was exacerbated during growth in rich media. The Δcdc43 mutant also displayed hypersensitivity to cell wall stress agents and to cell wall synthesis inhibitors, suggesting alterations of cell wall biosynthesis or stress signaling. In support of this, analyses of cell wall content revealed decreased amounts of β-glucan in the Δcdc43 strain. Despite strong in vitro phenotypes, the Δcdc43 mutant was fully virulent in two models of murine invasive aspergillosis, similar to the control strain. We further found that a strain expressing the α-subunit gene, ramB, from a tetracycline-inducible promoter was inviable under non-inducing in vitro growth conditions and was virtually avirulent in both mouse models. Lastly, virulence studies using C. albicans strains with tetracycline-repressible RAM2 or CDC43 expression revealed reduced pathogenicity associated with downregulation of either gene in a murine model of disseminated infection. Together, these findings indicate a differential requirement for protein geranylgeranylation for fungal virulence, and further inform the selection of specific prenyltransferases as promising antifungal drug targets for each pathogen. Taylor & Francis 2019-05-25 /pmc/articles/PMC6550545/ /pubmed/31131706 http://dx.doi.org/10.1080/21505594.2019.1620063 Text en © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Paper Souza, Ana Camila Oliveira Al Abdallah, Qusai DeJarnette, Kaci Martin-Vicente, Adela Nywening, Ashley V. DeJarnette, Christian Sansevere, Emily A. Ge, Wenbo Palmer, Glen E. Fortwendel, Jarrod R Differential requirements of protein geranylgeranylation for the virulence of human pathogenic fungi |
title | Differential requirements of protein geranylgeranylation for the virulence of human pathogenic fungi |
title_full | Differential requirements of protein geranylgeranylation for the virulence of human pathogenic fungi |
title_fullStr | Differential requirements of protein geranylgeranylation for the virulence of human pathogenic fungi |
title_full_unstemmed | Differential requirements of protein geranylgeranylation for the virulence of human pathogenic fungi |
title_short | Differential requirements of protein geranylgeranylation for the virulence of human pathogenic fungi |
title_sort | differential requirements of protein geranylgeranylation for the virulence of human pathogenic fungi |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6550545/ https://www.ncbi.nlm.nih.gov/pubmed/31131706 http://dx.doi.org/10.1080/21505594.2019.1620063 |
work_keys_str_mv | AT souzaanacamilaoliveira differentialrequirementsofproteingeranylgeranylationforthevirulenceofhumanpathogenicfungi AT alabdallahqusai differentialrequirementsofproteingeranylgeranylationforthevirulenceofhumanpathogenicfungi AT dejarnettekaci differentialrequirementsofproteingeranylgeranylationforthevirulenceofhumanpathogenicfungi AT martinvicenteadela differentialrequirementsofproteingeranylgeranylationforthevirulenceofhumanpathogenicfungi AT nyweningashleyv differentialrequirementsofproteingeranylgeranylationforthevirulenceofhumanpathogenicfungi AT dejarnettechristian differentialrequirementsofproteingeranylgeranylationforthevirulenceofhumanpathogenicfungi AT sansevereemilya differentialrequirementsofproteingeranylgeranylationforthevirulenceofhumanpathogenicfungi AT gewenbo differentialrequirementsofproteingeranylgeranylationforthevirulenceofhumanpathogenicfungi AT palmerglene differentialrequirementsofproteingeranylgeranylationforthevirulenceofhumanpathogenicfungi AT fortwendeljarrodr differentialrequirementsofproteingeranylgeranylationforthevirulenceofhumanpathogenicfungi |