Cargando…
Deep convolutional neural networks for mammography: advances, challenges and applications
BACKGROUND: The limitations of traditional computer-aided detection (CAD) systems for mammography, the extreme importance of early detection of breast cancer and the high impact of the false diagnosis of patients drive researchers to investigate deep learning (DL) methods for mammograms (MGs). Recen...
Autores principales: | Abdelhafiz, Dina, Yang, Clifford, Ammar, Reda, Nabavi, Sheida |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6551243/ https://www.ncbi.nlm.nih.gov/pubmed/31167642 http://dx.doi.org/10.1186/s12859-019-2823-4 |
Ejemplares similares
-
Convolutional neural network for automated mass segmentation in mammography
por: Abdelhafiz, Dina, et al.
Publicado: (2020) -
Convolutional Neural Networks for the Segmentation of Microcalcification in Mammography Imaging
por: Valvano, Gabriele, et al.
Publicado: (2019) -
Automatic and standardized quality assurance of digital mammography and tomosynthesis with deep convolutional neural networks
por: Hejduk, Patryk, et al.
Publicado: (2023) -
Single-cell classification using graph convolutional networks
por: Wang, Tianyu, et al.
Publicado: (2021) -
Classification of asymmetry in mammography via the DenseNet convolutional neural network
por: Liao, Tingting, et al.
Publicado: (2023)