Cargando…

Inefficient Secretion of Anti-sigma Factor FlgM Inhibits Bacterial Motility at High Temperature

Temperature is one of the key cues that enable microorganisms to adjust their physiology in response to environmental changes. Here we show that motility is the major cellular function of Escherichia coli that is differentially regulated between growth at normal host temperature of 37°C and the febr...

Descripción completa

Detalles Bibliográficos
Autores principales: Rudenko, Iaroslav, Ni, Bin, Glatter, Timo, Sourjik, Victor
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6551532/
https://www.ncbi.nlm.nih.gov/pubmed/31170626
http://dx.doi.org/10.1016/j.isci.2019.05.022
Descripción
Sumario:Temperature is one of the key cues that enable microorganisms to adjust their physiology in response to environmental changes. Here we show that motility is the major cellular function of Escherichia coli that is differentially regulated between growth at normal host temperature of 37°C and the febrile temperature of 42°C. Expression of both class II and class III flagellar genes is reduced at 42°C because of lowered level of the upstream activator FlhD. Class III genes are additionally repressed because of the destabilization and malfunction of secretion apparatus at high temperature, which prevents secretion of the anti-sigma factor FlgM. This mechanism of repression apparently accelerates loss of motility at 42°C. We hypothesize that E. coli perceives high temperature as a sign of inflammation, downregulating flagella to escape detection by the immune system of the host. Secretion-dependent coupling of gene expression to the environmental temperature is likely common among many bacteria.