Cargando…
Systemic signalling and local effectors in developmental stability, body symmetry, and size
Symmetric growth and the origins of fluctuating asymmetry are unresolved phenomena of biology. Small, and sometimes noticeable, deviations from perfect bilateral symmetry reflect the vulnerability of development to perturbations. The degree of asymmetry is related to the magnitude of the perturbatio...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Shared Science Publishers OG
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6551673/ https://www.ncbi.nlm.nih.gov/pubmed/31225459 http://dx.doi.org/10.15698/cst2018.12.167 |
_version_ | 1783424432325263360 |
---|---|
author | Juarez-Carreño, Sergio Morante, Javier Dominguez, Maria |
author_facet | Juarez-Carreño, Sergio Morante, Javier Dominguez, Maria |
author_sort | Juarez-Carreño, Sergio |
collection | PubMed |
description | Symmetric growth and the origins of fluctuating asymmetry are unresolved phenomena of biology. Small, and sometimes noticeable, deviations from perfect bilateral symmetry reflect the vulnerability of development to perturbations. The degree of asymmetry is related to the magnitude of the perturbations and the ability of an individual to cope with them. As the left and right sides of an individual were presumed to be genetically identical, deviations of symmetry were traditionally attributed to non-genetic effects such as environmental and developmental noise. In this review, we draw attention to other possible sources of variability, especially to somatic mutations and transposons. Mutations are a major source of phenotypic variability and recent genomic data have highlighted somatic mutations as ubiquitous, even in phenotypically normal individuals. We discuss the importance of factors that are responsible for buffering and stabilizing the genome and for maintaining size robustness and quality through elimination of less-fit or damaged cells. However, the important question that arises from these studies is whether this self-correcting capacity and intrinsic organ size controls are sufficient to explain how symmetric structures can reach an identical size and shape. Indeed, recent discoveries in the fruit fly have uncovered a conserved hormone of the insulin/IGF/relaxin family, Dilp8, that is responsible for stabilizing body size and symmetry in the face of growth perturbations. Dilp8 alarm signals periphery growth status to the brain, where it acts on its receptor Lgr3. Loss of Dilp8-Lgr3 signaling renders flies incapable of detecting growth perturbations and thus maintaining a stable size and symmetry. These findings help to understand how size and symmetry of somatic tissues remain undeterred in noisy environments, after injury or illnesses, and in the presence of accumulated somatic mutations. |
format | Online Article Text |
id | pubmed-6551673 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Shared Science Publishers OG |
record_format | MEDLINE/PubMed |
spelling | pubmed-65516732019-06-20 Systemic signalling and local effectors in developmental stability, body symmetry, and size Juarez-Carreño, Sergio Morante, Javier Dominguez, Maria Cell Stress Review Symmetric growth and the origins of fluctuating asymmetry are unresolved phenomena of biology. Small, and sometimes noticeable, deviations from perfect bilateral symmetry reflect the vulnerability of development to perturbations. The degree of asymmetry is related to the magnitude of the perturbations and the ability of an individual to cope with them. As the left and right sides of an individual were presumed to be genetically identical, deviations of symmetry were traditionally attributed to non-genetic effects such as environmental and developmental noise. In this review, we draw attention to other possible sources of variability, especially to somatic mutations and transposons. Mutations are a major source of phenotypic variability and recent genomic data have highlighted somatic mutations as ubiquitous, even in phenotypically normal individuals. We discuss the importance of factors that are responsible for buffering and stabilizing the genome and for maintaining size robustness and quality through elimination of less-fit or damaged cells. However, the important question that arises from these studies is whether this self-correcting capacity and intrinsic organ size controls are sufficient to explain how symmetric structures can reach an identical size and shape. Indeed, recent discoveries in the fruit fly have uncovered a conserved hormone of the insulin/IGF/relaxin family, Dilp8, that is responsible for stabilizing body size and symmetry in the face of growth perturbations. Dilp8 alarm signals periphery growth status to the brain, where it acts on its receptor Lgr3. Loss of Dilp8-Lgr3 signaling renders flies incapable of detecting growth perturbations and thus maintaining a stable size and symmetry. These findings help to understand how size and symmetry of somatic tissues remain undeterred in noisy environments, after injury or illnesses, and in the presence of accumulated somatic mutations. Shared Science Publishers OG 2018-11-13 /pmc/articles/PMC6551673/ /pubmed/31225459 http://dx.doi.org/10.15698/cst2018.12.167 Text en Copyright: © 2018 Juarez-Carreño et al. https://creativecommons.org/licenses/by/4.0/ This is an open-access article released under the terms of the Creative Commons Attribution (CC BY) license, which allows the unrestricted use, distribution, and reproduction in any medium, provided the original author and source are acknowledged. |
spellingShingle | Review Juarez-Carreño, Sergio Morante, Javier Dominguez, Maria Systemic signalling and local effectors in developmental stability, body symmetry, and size |
title | Systemic signalling and local effectors in developmental stability, body symmetry, and size |
title_full | Systemic signalling and local effectors in developmental stability, body symmetry, and size |
title_fullStr | Systemic signalling and local effectors in developmental stability, body symmetry, and size |
title_full_unstemmed | Systemic signalling and local effectors in developmental stability, body symmetry, and size |
title_short | Systemic signalling and local effectors in developmental stability, body symmetry, and size |
title_sort | systemic signalling and local effectors in developmental stability, body symmetry, and size |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6551673/ https://www.ncbi.nlm.nih.gov/pubmed/31225459 http://dx.doi.org/10.15698/cst2018.12.167 |
work_keys_str_mv | AT juarezcarrenosergio systemicsignallingandlocaleffectorsindevelopmentalstabilitybodysymmetryandsize AT morantejavier systemicsignallingandlocaleffectorsindevelopmentalstabilitybodysymmetryandsize AT dominguezmaria systemicsignallingandlocaleffectorsindevelopmentalstabilitybodysymmetryandsize |