Cargando…
Control of nucleolar stress and translational reprogramming by lncRNAs
Under adverse environmental conditions, cells activate stress re-sponses that favour adaptation or, in case of irreversible damage, induce cell death. Multiple stress response pathways converge to downregulate ribo-some biogenesis and translation since these are the most energy consuming processes i...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Shared Science Publishers OG
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6551676/ https://www.ncbi.nlm.nih.gov/pubmed/31225496 http://dx.doi.org/10.15698/cst2019.01.172 |
Sumario: | Under adverse environmental conditions, cells activate stress re-sponses that favour adaptation or, in case of irreversible damage, induce cell death. Multiple stress response pathways converge to downregulate ribo-some biogenesis and translation since these are the most energy consuming processes in the cell. This adaptive response allows preserving genomic stabil-ity and saving energy for the recovery. It follows that the nucleolus is a major sensor and integrator of stress responses that are then transmitted to the translation machinery through an intricate series of conserved events. Long non-coding RNAs (lncRNAs) are emerging as important regulators of stress-induced cascades, for their ability to mediate post-transcriptional responses. Consistently, many of them are specifically expressed under stress conditions and a few have been already functionally linked to these processes, thus fur-ther supporting a role in stress management. In this review we survey differ-ent archetypes of lncRNAs specifically implicated in the regulation of nucleo-lar functions and translation reprogramming during stress responses. |
---|