Cargando…
The calibrated model-based concordance improved assessment of discriminative ability in patient clusters of limited sample size
BACKGROUND: Discriminative ability is an important aspect of prediction model performance, but challenging to assess in clustered (e.g., multicenter) data. Concordance (c)-indexes may be too extreme within small clusters. We aimed to define a new approach for the assessment of discriminative ability...
Autores principales: | van Klaveren, David, Steyerberg, Ewout W., Gönen, Mithat, Vergouwe, Yvonne |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6551913/ https://www.ncbi.nlm.nih.gov/pubmed/31183411 http://dx.doi.org/10.1186/s41512-019-0055-8 |
Ejemplares similares
-
Assessing discriminative ability of risk models in clustered data
por: van Klaveren, David, et al.
Publicado: (2014) -
Validation and updating of risk models based on multinomial logistic regression
por: Van Calster, Ben, et al.
Publicado: (2017) -
Graphical calibration curves and the integrated calibration index (ICI) for competing risk models
por: Austin, Peter C., et al.
Publicado: (2022) -
Validation of prediction models: examining temporal and geographic stability of baseline risk and estimated covariate effects
por: Austin, Peter C., et al.
Publicado: (2017) -
Methods for sample size determination in cluster randomized trials
por: Rutterford, Clare, et al.
Publicado: (2015)