Cargando…

Comprehensive Analysis of lncRNA–miRNA– mRNA Network Ascertains Prognostic Factors in Patients with Colon Cancer

BACKGROUND: Non-coding RNAs are competing endogenous RNAs in the occurrence and development of tumorigenesis; numerous microRNAs are aberrantly expressed in colon cancer tissues and play significant roles in oncogenesis development and metastasis. However, large clinical and RNA data are lacking to...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Zhenzhen, Fu, Peng, Yu, Zhengyi, Zhen, Fuxi, Gu, Yanhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6552362/
https://www.ncbi.nlm.nih.gov/pubmed/31159706
http://dx.doi.org/10.1177/1533033819853237
Descripción
Sumario:BACKGROUND: Non-coding RNAs are competing endogenous RNAs in the occurrence and development of tumorigenesis; numerous microRNAs are aberrantly expressed in colon cancer tissues and play significant roles in oncogenesis development and metastasis. However, large clinical and RNA data are lacking to further confirm the exact role of these RNAs in tumors. This study aimed to ascertain differential RNA expression between colon cancer and normal colon tissues. MATERIALS AND METHODS: RNA sequencing and clinical data of patients with colon cancer were procured from The Cancer Genome Atlas database; differentially expressed long non-coding RNA, differentially expressed messenger RNAs, and differentially expressed microRNAs were achieved using the limma package in edgeR to generate competing endogenous RNAs networks. Then, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were conducted with ggplot2 package, the Kaplan-Meier survival method was used to predict survival in patients with colon cancer. RESULTS: In total, 1174 differentially expressed long non-coding RNAs, 2068 differentially expressed messenger RNAs, and 239 differentially expressed microRNAs were generated between 480 colon cancer and 41 normal colon tissue samples. Three competing endogenous RNA networks were established. Gene Ontology analysis indicated that the genes of the up-regulated microRNA network were involved in negative regulation of transcription, DNA-template, and those of down-regulated microRNA network were involved in transforming growth factor β receptor signaling pathways, response to hypoxia, cell migration, while Kyoto Encyclopedia of Genes and Genomes analyses of these networks turned out to be negative. Three long non-coding RNAs (AP004609.1, ARHGEF26-AS1, and LINC00491), 3 microRNAs (miRNA-141, miRNA-216a, and miRNA-193b) and 3 RNAs (ULBP2, PHLPP2, and TPM2) were detected to be associated with prognosis by the Kaplan-Meier survival analysis. Additionally, univariate and multivariate Cox regression analyses showed that the microRNA-216a of the competing endogenous RNA might be an independent prognostic factor in colon cancer. CONCLUSIONS: This study constructed the non-coding RNA-related competing endogenous RNA networks in colon cancer and sheds lights on underlying biomarkers for colon cancer cohorts.