Cargando…
Quantitative insights into charge-separated states from one- and two-pulse laser experiments relevant for artificial photosynthesis
Charge-separated states (CSSs) are key intermediates in photosynthesis and solar energy conversion. However, the factors governing the formation efficiencies of CSSs are still poorly understood, and light-induced electron–hole recombinations as deactivation pathways competing with desired charge acc...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6553010/ https://www.ncbi.nlm.nih.gov/pubmed/31293747 http://dx.doi.org/10.1039/c9sc01381d |
_version_ | 1783424719237677056 |
---|---|
author | Neumann, Svenja Kerzig, Christoph Wenger, Oliver S. |
author_facet | Neumann, Svenja Kerzig, Christoph Wenger, Oliver S. |
author_sort | Neumann, Svenja |
collection | PubMed |
description | Charge-separated states (CSSs) are key intermediates in photosynthesis and solar energy conversion. However, the factors governing the formation efficiencies of CSSs are still poorly understood, and light-induced electron–hole recombinations as deactivation pathways competing with desired charge accumulations are largely unexplored. This greatly limits the possibility to perform efficient multi-electron transfer, which is essential for artificial photosynthesis. We present a systematic investigation of two donor–sensitizer–acceptor triads (with different donor–acceptor distances) capable of storing as much as 2.0 eV in their CSSs upon the absorption of a visible photon. Using quantitative one- and two-pulse laser flash photolysis, we provide deep insights into both the CSS formation quantum yield, which can reach up to 80%, and the fate of the CSS upon further (secondary) excitation with green photons. The triad with shorter intramolecular distances shows a remarkable excitation wavelength dependence of the CSS formation quantum yield, and the CSS of this triad undergoes more efficient light-induced charge recombination than the longer equivalent by about one order of magnitude, whilst thermal charge recombination shows the exact opposite behavior. The unexpected results of our detailed photophysical study can be rationalized by detrimental singlet charge transfer states or structural considerations, and could significantly contribute to the future design of CSS precursors for accumulative multi-electron transfer and artificial photosynthesis. |
format | Online Article Text |
id | pubmed-6553010 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-65530102019-07-10 Quantitative insights into charge-separated states from one- and two-pulse laser experiments relevant for artificial photosynthesis Neumann, Svenja Kerzig, Christoph Wenger, Oliver S. Chem Sci Chemistry Charge-separated states (CSSs) are key intermediates in photosynthesis and solar energy conversion. However, the factors governing the formation efficiencies of CSSs are still poorly understood, and light-induced electron–hole recombinations as deactivation pathways competing with desired charge accumulations are largely unexplored. This greatly limits the possibility to perform efficient multi-electron transfer, which is essential for artificial photosynthesis. We present a systematic investigation of two donor–sensitizer–acceptor triads (with different donor–acceptor distances) capable of storing as much as 2.0 eV in their CSSs upon the absorption of a visible photon. Using quantitative one- and two-pulse laser flash photolysis, we provide deep insights into both the CSS formation quantum yield, which can reach up to 80%, and the fate of the CSS upon further (secondary) excitation with green photons. The triad with shorter intramolecular distances shows a remarkable excitation wavelength dependence of the CSS formation quantum yield, and the CSS of this triad undergoes more efficient light-induced charge recombination than the longer equivalent by about one order of magnitude, whilst thermal charge recombination shows the exact opposite behavior. The unexpected results of our detailed photophysical study can be rationalized by detrimental singlet charge transfer states or structural considerations, and could significantly contribute to the future design of CSS precursors for accumulative multi-electron transfer and artificial photosynthesis. Royal Society of Chemistry 2019-05-09 /pmc/articles/PMC6553010/ /pubmed/31293747 http://dx.doi.org/10.1039/c9sc01381d Text en This journal is © The Royal Society of Chemistry 2019 http://creativecommons.org/licenses/by-nc/3.0/ This article is freely available. This article is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported Licence (CC BY-NC 3.0) |
spellingShingle | Chemistry Neumann, Svenja Kerzig, Christoph Wenger, Oliver S. Quantitative insights into charge-separated states from one- and two-pulse laser experiments relevant for artificial photosynthesis |
title | Quantitative insights into charge-separated states from one- and two-pulse laser experiments relevant for artificial photosynthesis
|
title_full | Quantitative insights into charge-separated states from one- and two-pulse laser experiments relevant for artificial photosynthesis
|
title_fullStr | Quantitative insights into charge-separated states from one- and two-pulse laser experiments relevant for artificial photosynthesis
|
title_full_unstemmed | Quantitative insights into charge-separated states from one- and two-pulse laser experiments relevant for artificial photosynthesis
|
title_short | Quantitative insights into charge-separated states from one- and two-pulse laser experiments relevant for artificial photosynthesis
|
title_sort | quantitative insights into charge-separated states from one- and two-pulse laser experiments relevant for artificial photosynthesis |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6553010/ https://www.ncbi.nlm.nih.gov/pubmed/31293747 http://dx.doi.org/10.1039/c9sc01381d |
work_keys_str_mv | AT neumannsvenja quantitativeinsightsintochargeseparatedstatesfromoneandtwopulselaserexperimentsrelevantforartificialphotosynthesis AT kerzigchristoph quantitativeinsightsintochargeseparatedstatesfromoneandtwopulselaserexperimentsrelevantforartificialphotosynthesis AT wengerolivers quantitativeinsightsintochargeseparatedstatesfromoneandtwopulselaserexperimentsrelevantforartificialphotosynthesis |