Cargando…

Application of machine learning in the diagnosis of axial spondyloarthritis

PURPOSE OF REVIEW: In this review article, we describe the development and application of machine-learning models in the field of rheumatology to improve the detection and diagnosis rates of underdiagnosed rheumatologic conditions, such as ankylosing spondylitis and axial spondyloarthritis (axSpA)....

Descripción completa

Detalles Bibliográficos
Autores principales: Walsh, Jessica A., Rozycki, Martin, Yi, Esther, Park, Yujin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams And Wilkins 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6553337/
https://www.ncbi.nlm.nih.gov/pubmed/31033569
http://dx.doi.org/10.1097/BOR.0000000000000612
Descripción
Sumario:PURPOSE OF REVIEW: In this review article, we describe the development and application of machine-learning models in the field of rheumatology to improve the detection and diagnosis rates of underdiagnosed rheumatologic conditions, such as ankylosing spondylitis and axial spondyloarthritis (axSpA). RECENT FINDINGS: In an attempt to aid in the earlier diagnosis of axSpA, we developed machine-learning models to predict a diagnosis of ankylosing spondylitis and axSpA using administrative claims and electronic medical record data. Machine-learning algorithms based on medical claims data predicted the diagnosis of ankylosing spondylitis better than a model developed based on clinical characteristics of ankylosing spondylitis. With additional clinical data, machine-learning algorithms developed using electronic medical records identified patients with axSpA with 82.6–91.8% accuracy. These two algorithms have helped us understand potential opportunities and challenges associated with each data set and with different analytic approaches. Efforts to refine and validate these machine-learning models are ongoing. SUMMARY: We discuss the challenges and benefits of machine-learning models in healthcare, along with potential opportunities for its application in the field of rheumatology, particularly in the early diagnosis of axSpA and ankylosing spondylitis.