Cargando…

The dualistic origin of human tumors

Life starts with a zygote, which is formed by the fusion of a haploid sperm and egg. The formation of a blastomere by cleavage division (nuclear division without an increase in cell size) is the first step in embryogenesis, after the formation of the zygote. Blastomeres are responsible for reprogram...

Descripción completa

Detalles Bibliográficos
Autor principal: Liu, Jinsong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6553492/
https://www.ncbi.nlm.nih.gov/pubmed/30040989
http://dx.doi.org/10.1016/j.semcancer.2018.07.004
_version_ 1783424824577622016
author Liu, Jinsong
author_facet Liu, Jinsong
author_sort Liu, Jinsong
collection PubMed
description Life starts with a zygote, which is formed by the fusion of a haploid sperm and egg. The formation of a blastomere by cleavage division (nuclear division without an increase in cell size) is the first step in embryogenesis, after the formation of the zygote. Blastomeres are responsible for reprogramming the parental genome as a new embryonic genome for generation of the pluripotent stem cells which then differentiate by Waddington’s epigenetic landscape to create a new life. Multiple authors over the past 150 years have proposed that tumors arises from development gone awry at a point within Waddington’s landscape. Recent discoveries showing that differentiated somatic cells can be reprogrammed into induced pluripotent stem cells, and that somatic cell nuclear transfer can be used to successfully clone animals, have fundamentally reshaped our understanding of tumor development and origin. Differentiated somatic cells are plastic and can be induced to dedifferentiate into pluripotent stem cells. Here, I review the evidence that suggests somatic cells may have a previously overlooked endogenous embryonic program that can be activated to dedifferentiate somatic cells into stem cells of various potencies for tumor initiation. Polyploid giant cancer cells (PGCCs) have long been observed in cancer and were thought originally to be nondividing. Contrary to this belief, recent findings show that stress-induced PGCCs divide by endoreplication, which may recapitulate the pattern of cleavage-like division in blastomeres and lead to dedifferentiation of somatic cells by a programmed process known as “the giant cell cycle”, which comprise four distinct but overlapping phases: initiation, self-renewal, termination and stability. Depending on the intensity and type of stress, different levels of dedifferentiation result in the formation of tumors of different grades of malignancy. Based on these results, I propose a unified dualistic model to demonstrate the origin of human tumors. The tenet of this model includes four points, as follows. 1. Tumors originate from a stem cell at a specific developmental hierarchy, which can be achieved by dualistic origin: dedifferentiation of the zygote formed by two haploid gametes (sexual reproduction) via the blastomere during normal development, or transformation from damaged or aged mature somatic cells via a blastomere-like embryonic program (asexual reproduction). 2. Initiation of the tumor begins with a stem cell that has uncoupled the differentiation from the proliferation program which results in stem cell maturation arrest. 3. The developmental hierarchy at which stem cells arrest determines the degree of malignancy: the more primitive the level at which stem cells arrest, the greater the likelihood of the tumor being malignant. 4. Environmental factors and intrinsic genetic or epigenetic alterations represent the risk factors or stressors that facilitate stem cell arrest and somatic cell dedifferentiation. However, they, per se, are not the driving force of tumorigenesis. Thus, the birth of a tumor can be viewed as a triad that originates from a stem cell via dedifferentiation through a blastomere or blastomere-like program, which then differentiates along Waddington’s landscape, and arrests at a developmental hierarchy. Blocking the PGCC-mediated dedifferentiation process and inducing their differentiation may represent a novel alternative approach to eliminate the tumor occurrence and therapeutic resistance.
format Online
Article
Text
id pubmed-6553492
institution National Center for Biotechnology Information
language English
publishDate 2018
record_format MEDLINE/PubMed
spelling pubmed-65534922019-06-06 The dualistic origin of human tumors Liu, Jinsong Semin Cancer Biol Article Life starts with a zygote, which is formed by the fusion of a haploid sperm and egg. The formation of a blastomere by cleavage division (nuclear division without an increase in cell size) is the first step in embryogenesis, after the formation of the zygote. Blastomeres are responsible for reprogramming the parental genome as a new embryonic genome for generation of the pluripotent stem cells which then differentiate by Waddington’s epigenetic landscape to create a new life. Multiple authors over the past 150 years have proposed that tumors arises from development gone awry at a point within Waddington’s landscape. Recent discoveries showing that differentiated somatic cells can be reprogrammed into induced pluripotent stem cells, and that somatic cell nuclear transfer can be used to successfully clone animals, have fundamentally reshaped our understanding of tumor development and origin. Differentiated somatic cells are plastic and can be induced to dedifferentiate into pluripotent stem cells. Here, I review the evidence that suggests somatic cells may have a previously overlooked endogenous embryonic program that can be activated to dedifferentiate somatic cells into stem cells of various potencies for tumor initiation. Polyploid giant cancer cells (PGCCs) have long been observed in cancer and were thought originally to be nondividing. Contrary to this belief, recent findings show that stress-induced PGCCs divide by endoreplication, which may recapitulate the pattern of cleavage-like division in blastomeres and lead to dedifferentiation of somatic cells by a programmed process known as “the giant cell cycle”, which comprise four distinct but overlapping phases: initiation, self-renewal, termination and stability. Depending on the intensity and type of stress, different levels of dedifferentiation result in the formation of tumors of different grades of malignancy. Based on these results, I propose a unified dualistic model to demonstrate the origin of human tumors. The tenet of this model includes four points, as follows. 1. Tumors originate from a stem cell at a specific developmental hierarchy, which can be achieved by dualistic origin: dedifferentiation of the zygote formed by two haploid gametes (sexual reproduction) via the blastomere during normal development, or transformation from damaged or aged mature somatic cells via a blastomere-like embryonic program (asexual reproduction). 2. Initiation of the tumor begins with a stem cell that has uncoupled the differentiation from the proliferation program which results in stem cell maturation arrest. 3. The developmental hierarchy at which stem cells arrest determines the degree of malignancy: the more primitive the level at which stem cells arrest, the greater the likelihood of the tumor being malignant. 4. Environmental factors and intrinsic genetic or epigenetic alterations represent the risk factors or stressors that facilitate stem cell arrest and somatic cell dedifferentiation. However, they, per se, are not the driving force of tumorigenesis. Thus, the birth of a tumor can be viewed as a triad that originates from a stem cell via dedifferentiation through a blastomere or blastomere-like program, which then differentiates along Waddington’s landscape, and arrests at a developmental hierarchy. Blocking the PGCC-mediated dedifferentiation process and inducing their differentiation may represent a novel alternative approach to eliminate the tumor occurrence and therapeutic resistance. 2018-07-21 2018-12 /pmc/articles/PMC6553492/ /pubmed/30040989 http://dx.doi.org/10.1016/j.semcancer.2018.07.004 Text en https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/ (https://creativecommons.org/licenses/by/4.0/) ).
spellingShingle Article
Liu, Jinsong
The dualistic origin of human tumors
title The dualistic origin of human tumors
title_full The dualistic origin of human tumors
title_fullStr The dualistic origin of human tumors
title_full_unstemmed The dualistic origin of human tumors
title_short The dualistic origin of human tumors
title_sort dualistic origin of human tumors
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6553492/
https://www.ncbi.nlm.nih.gov/pubmed/30040989
http://dx.doi.org/10.1016/j.semcancer.2018.07.004
work_keys_str_mv AT liujinsong thedualisticoriginofhumantumors
AT liujinsong dualisticoriginofhumantumors