Cargando…
Adenine Methylation in Drosophila Is Associated with the Tissue-Specific Expression of Developmental and Regulatory Genes
N6-methyladenine (6mA or m6dA) is a DNA modification that has long been known to play an important role in a variety of biological functions in prokaryotes. This modification has only recently been described in eukaryotes, where it seems to have evolved species-specific functions ranging from nucleo...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Genetics Society of America
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6553526/ https://www.ncbi.nlm.nih.gov/pubmed/30988038 http://dx.doi.org/10.1534/g3.119.400023 |
_version_ | 1783424830437064704 |
---|---|
author | Shah, Kinnary Cao, Weihuan Ellison, Christopher E. |
author_facet | Shah, Kinnary Cao, Weihuan Ellison, Christopher E. |
author_sort | Shah, Kinnary |
collection | PubMed |
description | N6-methyladenine (6mA or m6dA) is a DNA modification that has long been known to play an important role in a variety of biological functions in prokaryotes. This modification has only recently been described in eukaryotes, where it seems to have evolved species-specific functions ranging from nucleosome positioning to transposon repression. In Drosophila, 6mA has been shown to be important for enforcing the tissue specificity of neuronal genes in the brain and suppressing transposable element expression in the ovaries. In this study, we have analyzed the raw signal data from nanopore sequencing to identify 6mA positions in the D. melanogaster genome at single-base resolution. We find that this modification is enriched upstream from transcription start sites, within the introns and 3′ UTRs of genes, as well as in simple repeats. These 6mA positions are enriched for sequence motifs that are recognized by known transcriptional activators involved in development, such as Bicoid and Caudal, and the genes that carry this modification are enriched for functions involved in development, regulation of transcription, and neuronal activity. These genes show high expression specificity in a variety of tissues besides the brain, suggesting that this modification may play a more general role in enforcing the specificity of gene expression across many tissues, throughout development, and between the sexes. |
format | Online Article Text |
id | pubmed-6553526 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Genetics Society of America |
record_format | MEDLINE/PubMed |
spelling | pubmed-65535262019-06-12 Adenine Methylation in Drosophila Is Associated with the Tissue-Specific Expression of Developmental and Regulatory Genes Shah, Kinnary Cao, Weihuan Ellison, Christopher E. G3 (Bethesda) Investigations N6-methyladenine (6mA or m6dA) is a DNA modification that has long been known to play an important role in a variety of biological functions in prokaryotes. This modification has only recently been described in eukaryotes, where it seems to have evolved species-specific functions ranging from nucleosome positioning to transposon repression. In Drosophila, 6mA has been shown to be important for enforcing the tissue specificity of neuronal genes in the brain and suppressing transposable element expression in the ovaries. In this study, we have analyzed the raw signal data from nanopore sequencing to identify 6mA positions in the D. melanogaster genome at single-base resolution. We find that this modification is enriched upstream from transcription start sites, within the introns and 3′ UTRs of genes, as well as in simple repeats. These 6mA positions are enriched for sequence motifs that are recognized by known transcriptional activators involved in development, such as Bicoid and Caudal, and the genes that carry this modification are enriched for functions involved in development, regulation of transcription, and neuronal activity. These genes show high expression specificity in a variety of tissues besides the brain, suggesting that this modification may play a more general role in enforcing the specificity of gene expression across many tissues, throughout development, and between the sexes. Genetics Society of America 2019-04-15 /pmc/articles/PMC6553526/ /pubmed/30988038 http://dx.doi.org/10.1534/g3.119.400023 Text en Copyright © 2019 Shah et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Investigations Shah, Kinnary Cao, Weihuan Ellison, Christopher E. Adenine Methylation in Drosophila Is Associated with the Tissue-Specific Expression of Developmental and Regulatory Genes |
title | Adenine Methylation in Drosophila Is Associated with the Tissue-Specific Expression of Developmental and Regulatory Genes |
title_full | Adenine Methylation in Drosophila Is Associated with the Tissue-Specific Expression of Developmental and Regulatory Genes |
title_fullStr | Adenine Methylation in Drosophila Is Associated with the Tissue-Specific Expression of Developmental and Regulatory Genes |
title_full_unstemmed | Adenine Methylation in Drosophila Is Associated with the Tissue-Specific Expression of Developmental and Regulatory Genes |
title_short | Adenine Methylation in Drosophila Is Associated with the Tissue-Specific Expression of Developmental and Regulatory Genes |
title_sort | adenine methylation in drosophila is associated with the tissue-specific expression of developmental and regulatory genes |
topic | Investigations |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6553526/ https://www.ncbi.nlm.nih.gov/pubmed/30988038 http://dx.doi.org/10.1534/g3.119.400023 |
work_keys_str_mv | AT shahkinnary adeninemethylationindrosophilaisassociatedwiththetissuespecificexpressionofdevelopmentalandregulatorygenes AT caoweihuan adeninemethylationindrosophilaisassociatedwiththetissuespecificexpressionofdevelopmentalandregulatorygenes AT ellisonchristophere adeninemethylationindrosophilaisassociatedwiththetissuespecificexpressionofdevelopmentalandregulatorygenes |