Cargando…
Genomic Bayesian Confirmatory Factor Analysis and Bayesian Network To Characterize a Wide Spectrum of Rice Phenotypes
With the advent of high-throughput phenotyping platforms, plant breeders have a means to assess many traits for large breeding populations. However, understanding the genetic interdependencies among high-dimensional traits in a statistically robust manner remains a major challenge. Since multiple ph...
Autores principales: | Yu, Haipeng, Campbell, Malachy T., Zhang, Qi, Walia, Harkamal, Morota, Gota |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Genetics Society of America
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6553530/ https://www.ncbi.nlm.nih.gov/pubmed/30992319 http://dx.doi.org/10.1534/g3.119.400154 |
Ejemplares similares
-
Utilizing trait networks and structural equation models as tools to interpret multi-trait genome-wide association studies
por: Momen, Mehdi, et al.
Publicado: (2019) -
Utilizing random regression models for genomic prediction of a longitudinal trait derived from high‐throughput phenotyping
por: Campbell, Malachy, et al.
Publicado: (2018) -
Leveraging genome-enabled growth models to study shoot growth responses to water deficit in rice
por: Campbell, Malachy T, et al.
Publicado: (2020) -
ShinyAIM: Shiny‐based application of interactive Manhattan plots for longitudinal genome‐wide association studies
por: Hussain, Waseem, et al.
Publicado: (2018) -
Multi-trait random regression models increase genomic prediction accuracy for a temporal physiological trait derived from high-throughput phenotyping
por: Baba, Toshimi, et al.
Publicado: (2020)