Cargando…
Prediction models for high risk of suicide in Korean adolescents using machine learning techniques
OBJECTIVE: Suicide in adolescents is a major problem worldwide and previous history of suicide ideation and attempt represents the strongest predictors of future suicidal behavior. The aim of this study was to develop prediction model to identify Korean adolescents of high risk suicide (= who have h...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6553749/ https://www.ncbi.nlm.nih.gov/pubmed/31170212 http://dx.doi.org/10.1371/journal.pone.0217639 |
Sumario: | OBJECTIVE: Suicide in adolescents is a major problem worldwide and previous history of suicide ideation and attempt represents the strongest predictors of future suicidal behavior. The aim of this study was to develop prediction model to identify Korean adolescents of high risk suicide (= who have history of suicide ideation/attempt in previous year) using machine learning techniques. METHODS: A nationally representative dataset of Korea Youth Risk Behavior Web-based Survey (KYRBWS) was used (n = 59,984 of middle and high school students in 2017). The classification process was performed using machine learning techniques such as logistic regression (LR), random forest (RF), support vector machine (SVM), artificial neural network (ANN), and extreme gradient boosting (XGB). RESULTS: A total of 7,443 adolescents (12.4%) had a previous history of suicidal ideation/attempt. In the multivariable analysis, sadness (odds ratio [OR], 6.41; 95% confidence interval [95% CI], 6.08–6.87), violence (OR, 2.32; 95% CI, 2.01–2.67), substance use (OR, 1.93; 95% CI, 1.52–2.45), and stress (OR, 1.63; 95% CI, 1.40–1.86) were associated factors. Taking into account 26 variables as predictors, the accuracy of models of machine learning techniques to predict the high-risk suicidal was comparable with that of LR; the accuracy was best in XGB (79.0%), followed by SVM (78.7%), LR (77.9%), RF (77.8%), and ANN (77.5%). CONCLUSIONS: The machine leaning techniques showed comparable performance with LR to classify adolescents who have previous history of suicidal ideation/attempt. This model will hopefully serve as a foundation for decreasing future suicides as it enables early identification of adolescents at risk of suicide and modification of risk factors. |
---|