Cargando…

Dynamical analysis of bacteria in microscopy movies

Recent advances in microscopy, computing power and image processing have enabled the analysis of ever larger datasets of movies of microorganisms to study their behaviour. However, techniques for analysing the dynamics of individual cells from such datasets are not yet widely available in the public...

Descripción completa

Detalles Bibliográficos
Autores principales: Vissers, Teun, Koumakis, Nick, Hermes, Michiel, Brown, Aidan T., Schwarz-Linek, Jana, Dawson, Angela, Poon, Wilson C. K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6553751/
https://www.ncbi.nlm.nih.gov/pubmed/31170194
http://dx.doi.org/10.1371/journal.pone.0217823
Descripción
Sumario:Recent advances in microscopy, computing power and image processing have enabled the analysis of ever larger datasets of movies of microorganisms to study their behaviour. However, techniques for analysing the dynamics of individual cells from such datasets are not yet widely available in the public domain. We recently demonstrated significant phenotypic heterogeneity in the adhesion of Escherichia coli bacteria to glass surfaces using a new method for the high-throughput analysis of video microscopy data. Here, we present an in-depth analysis of this method and its limitations, and make public our algorithms for following the positions and orientations of individual rod-shaped bacteria from time-series of 2D images to reconstruct their trajectories and characterise their dynamics. We demonstrate in detail how to use these algorithms to identify different types of adhesive dynamics within a clonal population of bacteria sedimenting onto a surface. The effects of measurement errors in cell positions and of limited trajectory durations on our results are discussed.