Cargando…
Genetic dissociation of three antigenic genes in Plasmodium ovale curtisi and Plasmodium ovale wallikeri
Plasmodium ovale curtisi and Plasmodium ovale wallikeri are two sympatric human malaria species prevalent in Africa, Asia and Oceania. The reported prevalence of both P. ovale spp. was relatively low compared to other malaria species, but more sensitive molecular detection techniques have shown that...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6553752/ https://www.ncbi.nlm.nih.gov/pubmed/31170213 http://dx.doi.org/10.1371/journal.pone.0217795 |
_version_ | 1783424869692604416 |
---|---|
author | Saralamba, Naowarat Nosten, Francois Sutherland, Colin J. Arez, Ana Paula Snounou, Georges White, Nicholas J. Day, Nicholas P. J. Dondorp, Arjen M. Imwong, Mallika |
author_facet | Saralamba, Naowarat Nosten, Francois Sutherland, Colin J. Arez, Ana Paula Snounou, Georges White, Nicholas J. Day, Nicholas P. J. Dondorp, Arjen M. Imwong, Mallika |
author_sort | Saralamba, Naowarat |
collection | PubMed |
description | Plasmodium ovale curtisi and Plasmodium ovale wallikeri are two sympatric human malaria species prevalent in Africa, Asia and Oceania. The reported prevalence of both P. ovale spp. was relatively low compared to other malaria species, but more sensitive molecular detection techniques have shown that asymptomatic low-density infections are more common than previously thought. Whole genome sequencing of both P. ovale spp. revealed genetic dissociation between P. ovale curtisi and P. ovale wallikeri suggesting a species barrier. In this study we further evaluate such a barrier by assessing polymorphisms in the genes of three vaccine candidate surface protein: circumsporozoite protein/ thrombospondin-related anonymous-related protein (ctrp), circumsporozoite surface protein (csp) and merozoite surface protein 1 (msp1). The complete coding sequence of ctrp and csp, and a partial fragment of msp1 were isolated from 25 P. ovale isolates and compared to previously reported reference sequences. A low level of nucleotide diversity (Pi = 0.02–0.10) was observed in all three genes. Various sizes of tandem repeats were observed in all ctrp, csp and msp1 genes. Both tandem repeat unit and nucleotide polymorphism in all three genes exhibited clear dimorphism between P. ovale curtisi and P. ovale wallikeri, supporting evidence of non-recombination between these two species. |
format | Online Article Text |
id | pubmed-6553752 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-65537522019-06-17 Genetic dissociation of three antigenic genes in Plasmodium ovale curtisi and Plasmodium ovale wallikeri Saralamba, Naowarat Nosten, Francois Sutherland, Colin J. Arez, Ana Paula Snounou, Georges White, Nicholas J. Day, Nicholas P. J. Dondorp, Arjen M. Imwong, Mallika PLoS One Research Article Plasmodium ovale curtisi and Plasmodium ovale wallikeri are two sympatric human malaria species prevalent in Africa, Asia and Oceania. The reported prevalence of both P. ovale spp. was relatively low compared to other malaria species, but more sensitive molecular detection techniques have shown that asymptomatic low-density infections are more common than previously thought. Whole genome sequencing of both P. ovale spp. revealed genetic dissociation between P. ovale curtisi and P. ovale wallikeri suggesting a species barrier. In this study we further evaluate such a barrier by assessing polymorphisms in the genes of three vaccine candidate surface protein: circumsporozoite protein/ thrombospondin-related anonymous-related protein (ctrp), circumsporozoite surface protein (csp) and merozoite surface protein 1 (msp1). The complete coding sequence of ctrp and csp, and a partial fragment of msp1 were isolated from 25 P. ovale isolates and compared to previously reported reference sequences. A low level of nucleotide diversity (Pi = 0.02–0.10) was observed in all three genes. Various sizes of tandem repeats were observed in all ctrp, csp and msp1 genes. Both tandem repeat unit and nucleotide polymorphism in all three genes exhibited clear dimorphism between P. ovale curtisi and P. ovale wallikeri, supporting evidence of non-recombination between these two species. Public Library of Science 2019-06-06 /pmc/articles/PMC6553752/ /pubmed/31170213 http://dx.doi.org/10.1371/journal.pone.0217795 Text en © 2019 Saralamba et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Saralamba, Naowarat Nosten, Francois Sutherland, Colin J. Arez, Ana Paula Snounou, Georges White, Nicholas J. Day, Nicholas P. J. Dondorp, Arjen M. Imwong, Mallika Genetic dissociation of three antigenic genes in Plasmodium ovale curtisi and Plasmodium ovale wallikeri |
title | Genetic dissociation of three antigenic genes in Plasmodium ovale curtisi and Plasmodium ovale wallikeri |
title_full | Genetic dissociation of three antigenic genes in Plasmodium ovale curtisi and Plasmodium ovale wallikeri |
title_fullStr | Genetic dissociation of three antigenic genes in Plasmodium ovale curtisi and Plasmodium ovale wallikeri |
title_full_unstemmed | Genetic dissociation of three antigenic genes in Plasmodium ovale curtisi and Plasmodium ovale wallikeri |
title_short | Genetic dissociation of three antigenic genes in Plasmodium ovale curtisi and Plasmodium ovale wallikeri |
title_sort | genetic dissociation of three antigenic genes in plasmodium ovale curtisi and plasmodium ovale wallikeri |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6553752/ https://www.ncbi.nlm.nih.gov/pubmed/31170213 http://dx.doi.org/10.1371/journal.pone.0217795 |
work_keys_str_mv | AT saralambanaowarat geneticdissociationofthreeantigenicgenesinplasmodiumovalecurtisiandplasmodiumovalewallikeri AT nostenfrancois geneticdissociationofthreeantigenicgenesinplasmodiumovalecurtisiandplasmodiumovalewallikeri AT sutherlandcolinj geneticdissociationofthreeantigenicgenesinplasmodiumovalecurtisiandplasmodiumovalewallikeri AT arezanapaula geneticdissociationofthreeantigenicgenesinplasmodiumovalecurtisiandplasmodiumovalewallikeri AT snounougeorges geneticdissociationofthreeantigenicgenesinplasmodiumovalecurtisiandplasmodiumovalewallikeri AT whitenicholasj geneticdissociationofthreeantigenicgenesinplasmodiumovalecurtisiandplasmodiumovalewallikeri AT daynicholaspj geneticdissociationofthreeantigenicgenesinplasmodiumovalecurtisiandplasmodiumovalewallikeri AT dondorparjenm geneticdissociationofthreeantigenicgenesinplasmodiumovalecurtisiandplasmodiumovalewallikeri AT imwongmallika geneticdissociationofthreeantigenicgenesinplasmodiumovalecurtisiandplasmodiumovalewallikeri |