Cargando…
LISA: Accurate reconstruction of cell trajectory and pseudo-time for massive single cell RNA-seq data
Cell trajectory reconstruction based on single cell RNA sequencing is important for obtaining the landscape of different cell types and discovering cell fate transitions. Despite intense effort, analyzing massive single cell RNA-seq datasets is still challenging. We propose a new method named Landma...
Autores principales: | Chen, Yang, Zhang, Yuping, Ouyang, Zhengqing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6554064/ https://www.ncbi.nlm.nih.gov/pubmed/30864335 |
Ejemplares similares
-
LISA2: Learning Complex Single-Cell Trajectory and Expression Trends
por: Chen, Yang, et al.
Publicado: (2021) -
TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq
analysis
por: Ji, Zhicheng, et al.
Publicado: (2016) -
redPATH: Reconstructing the Pseudo Development Time of Cell Lineages in Single-cell RNA-seq Data and Applications in Cancer
por: Xie, Kaikun, et al.
Publicado: (2021) -
A new graph-based clustering method with application to single-cell RNA-seq data from human pancreatic islets
por: Wu, Hao, et al.
Publicado: (2021) -
Reconstructing the Developmental Trajectories of Multiple Subtypes in Pulmonary Parenchymal Epithelial Cells by Single-Cell RNA-seq
por: Huang, Yiwei, et al.
Publicado: (2020)