Cargando…
Deep learning as a predictive tool for fetal heart pregnancy following time-lapse incubation and blastocyst transfer
STUDY QUESTION: Can a deep learning model predict the probability of pregnancy with fetal heart (FH) from time-lapse videos? SUMMARY ANSWER: We created a deep learning model named IVY, which was an objective and fully automated system that predicts the probability of FH pregnancy directly from raw t...
Autores principales: | Tran, D, Cooke, S, Illingworth, P J, Gardner, D K |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6554189/ https://www.ncbi.nlm.nih.gov/pubmed/31111884 http://dx.doi.org/10.1093/humrep/dez064 |
Ejemplares similares
-
Development of deep learning algorithms for predicting blastocyst formation and quality by time-lapse monitoring
por: Liao, Qiuyue, et al.
Publicado: (2021) -
Spontaneous blastocyst collapse as an embryo marker of low pregnancy outcome: A Time-Lapse study
por: Sciorio, Romualdo, et al.
Publicado: (2020) -
Analysis of embryo morphokinetics, multinucleation and cleavage anomalies using continuous time-lapse monitoring in blastocyst transfer cycles
por: Desai, Nina, et al.
Publicado: (2014) -
Pregnancy rates of day 4 and day 5 embryos after culture in an integrated time-lapse incubator
por: Holschbach, Verena, et al.
Publicado: (2017) -
Transfer of spontaneously hatching or hatched blastocyst yields better pregnancy rates than expanded blastocyst transfer
por: Chimote, Natachandra M., et al.
Publicado: (2013)