Cargando…
ACP-DL: A Deep Learning Long Short-Term Memory Model to Predict Anticancer Peptides Using High-Efficiency Feature Representation
Cancer is a well-known killer of human beings, which has led to countless deaths and misery. Anticancer peptides open a promising perspective for cancer treatment, and they have various attractive advantages. Conventional wet experiments are expensive and inefficient for finding and identifying nove...
Autores principales: | Yi, Hai-Cheng, You, Zhu-Hong, Zhou, Xi, Cheng, Li, Li, Xiao, Jiang, Tong-Hai, Chen, Zhan-Heng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Gene & Cell Therapy
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6554234/ https://www.ncbi.nlm.nih.gov/pubmed/31173946 http://dx.doi.org/10.1016/j.omtn.2019.04.025 |
Ejemplares similares
-
ACP-BC: A Model for Accurate Identification of Anticancer Peptides Based on Fusion Features of Bidirectional Long Short-Term Memory and Chemically Derived Information
por: Sun, Mingwei, et al.
Publicado: (2023) -
DeepACP: A Novel Computational Approach for Accurate Identification of Anticancer Peptides by Deep Learning Algorithm
por: Yu, Lezheng, et al.
Publicado: (2020) -
ACP-DA: Improving the Prediction of Anticancer Peptides Using Data Augmentation
por: Chen, Xian-gan, et al.
Publicado: (2021) -
ACP-MHCNN: an accurate multi-headed deep-convolutional neural network to predict anticancer peptides
por: Ahmed, Sajid, et al.
Publicado: (2021) -
EnACP: An Ensemble Learning Model for Identification of Anticancer Peptides
por: Ge, Ruiquan, et al.
Publicado: (2020)