Cargando…

Theory of the field-revealed Kitaev spin liquid

Elementary excitations in entangled states such as quantum spin liquids may exhibit exotic statistics different from those obeyed by fundamental bosons and fermions. Non-Abelian anyons exist in a Kitaev spin liquid—the ground state of an exactly solvable model. A smoking-gun signature of these excit...

Descripción completa

Detalles Bibliográficos
Autores principales: Gordon, Jacob S., Catuneanu, Andrei, Sørensen, Erik S., Kee, Hae-Young
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6554414/
https://www.ncbi.nlm.nih.gov/pubmed/31171777
http://dx.doi.org/10.1038/s41467-019-10405-8
Descripción
Sumario:Elementary excitations in entangled states such as quantum spin liquids may exhibit exotic statistics different from those obeyed by fundamental bosons and fermions. Non-Abelian anyons exist in a Kitaev spin liquid—the ground state of an exactly solvable model. A smoking-gun signature of these excitations, namely a half-integer quantized thermal Hall conductivity, was recently reported in α-RuCl(3). While fascinating, a microscopic theory for this phenomenon remains elusive because the pure Kitaev model cannot display this effect in an intermediate magnetic field. Here we present a microscopic theory of the Kitaev spin liquid emerging between the low- and high-field states. Essential to this result is an antiferromagnetic off-diagonal symmetric interaction which allows the Kitaev spin liquid to protrude from the ferromagnetic Kitaev limit under a magnetic field. This generic model displays a strong field anisotropy, and we predict a wide spin liquid regime when the field is perpendicular to the honeycomb plane.