Cargando…
Quadcopter Flight Control Using a Non-invasive Multi-Modal Brain Computer Interface
Brain-Computer Interfaces (BCIs) translate neuronal information into commands to control external software or hardware, which can improve the quality of life for both healthy and disabled individuals. Here, a multi-modal BCI which combines motor imagery (MI) and steady-state visual evoked potential...
Autores principales: | Duan, Xu, Xie, Songyun, Xie, Xinzhou, Meng, Ya, Xu, Zhao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6554428/ https://www.ncbi.nlm.nih.gov/pubmed/31214009 http://dx.doi.org/10.3389/fnbot.2019.00023 |
Ejemplares similares
-
An Online Data Visualization Feedback Protocol for Motor Imagery-Based BCI Training
por: Duan, Xu, et al.
Publicado: (2021) -
Optimizing Computer–Brain Interface Parameters for Non-invasive Brain-to-Brain Interface
por: LaRocco, John, et al.
Publicado: (2020) -
Auditory Noise Leads to Increased Visual Brain-Computer Interface Performance: A Cross-Modal Study
por: Xie, Jun, et al.
Publicado: (2020) -
Multi-Modal Integration of EEG-fNIRS for Brain-Computer Interfaces – Current Limitations and Future Directions
por: Ahn, Sangtae, et al.
Publicado: (2017) -
Dynamic probability integration for electroencephalography-based rapid serial visual presentation performance enhancement: Application in nighttime vehicle detection
por: Cui, Yujie, et al.
Publicado: (2022)