Cargando…
Differential gene regulation in human small airway epithelial cells grown in monoculture versus coculture with human microvascular endothelial cells following multiwalled carbon nanotube exposure
Concurrent with rising production of carbon-based engineered nanomaterials is a potential increase in respiratory and cardiovascular diseases due to exposure to nanomaterials in the workplace atmosphere. While single-cell models of pulmonary exposure are often used to determine the potential toxicit...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6554470/ https://www.ncbi.nlm.nih.gov/pubmed/31194188 http://dx.doi.org/10.1016/j.toxrep.2019.05.010 |
_version_ | 1783424976329637888 |
---|---|
author | Snyder-Talkington, Brandi N. Dong, Chunlin Castranova, Vincent Qian, Yong Guo, Nancy L. |
author_facet | Snyder-Talkington, Brandi N. Dong, Chunlin Castranova, Vincent Qian, Yong Guo, Nancy L. |
author_sort | Snyder-Talkington, Brandi N. |
collection | PubMed |
description | Concurrent with rising production of carbon-based engineered nanomaterials is a potential increase in respiratory and cardiovascular diseases due to exposure to nanomaterials in the workplace atmosphere. While single-cell models of pulmonary exposure are often used to determine the potential toxicity of nanomaterials in vitro, previous studies have shown that coculture cell models better represent the cellular response and crosstalk that occurs in vivo. This study identified differential gene regulation in human small airway epithelial cells (SAECs) grown either in monoculture or in coculture with human microvascular endothelial cells following exposure of the SAECs to multiwalled carbon nanotubes (MWCNTs). SAEC genes that either changed their regulation direction from upregulated in monoculture to downregulated in coculture (or vice versa) or had a more than a two-fold changed in the same regulation direction were identified. Genes that changed regulation direction were most often involved in the processes of cellular growth and proliferation and cellular immune response and inflammation. Genes that had a more than a two-fold change in regulation in the same direction were most often involved in the inflammatory response. The direction and fold-change of this differential gene regulation suggests that toxicity testing in monoculture may exaggerate cellular responses to MWCNTs, and coculture of cells may provide a more in-depth assessment of toxicological responses. |
format | Online Article Text |
id | pubmed-6554470 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-65544702019-06-10 Differential gene regulation in human small airway epithelial cells grown in monoculture versus coculture with human microvascular endothelial cells following multiwalled carbon nanotube exposure Snyder-Talkington, Brandi N. Dong, Chunlin Castranova, Vincent Qian, Yong Guo, Nancy L. Toxicol Rep Article Concurrent with rising production of carbon-based engineered nanomaterials is a potential increase in respiratory and cardiovascular diseases due to exposure to nanomaterials in the workplace atmosphere. While single-cell models of pulmonary exposure are often used to determine the potential toxicity of nanomaterials in vitro, previous studies have shown that coculture cell models better represent the cellular response and crosstalk that occurs in vivo. This study identified differential gene regulation in human small airway epithelial cells (SAECs) grown either in monoculture or in coculture with human microvascular endothelial cells following exposure of the SAECs to multiwalled carbon nanotubes (MWCNTs). SAEC genes that either changed their regulation direction from upregulated in monoculture to downregulated in coculture (or vice versa) or had a more than a two-fold changed in the same regulation direction were identified. Genes that changed regulation direction were most often involved in the processes of cellular growth and proliferation and cellular immune response and inflammation. Genes that had a more than a two-fold change in regulation in the same direction were most often involved in the inflammatory response. The direction and fold-change of this differential gene regulation suggests that toxicity testing in monoculture may exaggerate cellular responses to MWCNTs, and coculture of cells may provide a more in-depth assessment of toxicological responses. Elsevier 2019-05-28 /pmc/articles/PMC6554470/ /pubmed/31194188 http://dx.doi.org/10.1016/j.toxrep.2019.05.010 Text en © 2019 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Snyder-Talkington, Brandi N. Dong, Chunlin Castranova, Vincent Qian, Yong Guo, Nancy L. Differential gene regulation in human small airway epithelial cells grown in monoculture versus coculture with human microvascular endothelial cells following multiwalled carbon nanotube exposure |
title | Differential gene regulation in human small airway epithelial cells grown in monoculture versus coculture with human microvascular endothelial cells following multiwalled carbon nanotube exposure |
title_full | Differential gene regulation in human small airway epithelial cells grown in monoculture versus coculture with human microvascular endothelial cells following multiwalled carbon nanotube exposure |
title_fullStr | Differential gene regulation in human small airway epithelial cells grown in monoculture versus coculture with human microvascular endothelial cells following multiwalled carbon nanotube exposure |
title_full_unstemmed | Differential gene regulation in human small airway epithelial cells grown in monoculture versus coculture with human microvascular endothelial cells following multiwalled carbon nanotube exposure |
title_short | Differential gene regulation in human small airway epithelial cells grown in monoculture versus coculture with human microvascular endothelial cells following multiwalled carbon nanotube exposure |
title_sort | differential gene regulation in human small airway epithelial cells grown in monoculture versus coculture with human microvascular endothelial cells following multiwalled carbon nanotube exposure |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6554470/ https://www.ncbi.nlm.nih.gov/pubmed/31194188 http://dx.doi.org/10.1016/j.toxrep.2019.05.010 |
work_keys_str_mv | AT snydertalkingtonbrandin differentialgeneregulationinhumansmallairwayepithelialcellsgrowninmonocultureversuscoculturewithhumanmicrovascularendothelialcellsfollowingmultiwalledcarbonnanotubeexposure AT dongchunlin differentialgeneregulationinhumansmallairwayepithelialcellsgrowninmonocultureversuscoculturewithhumanmicrovascularendothelialcellsfollowingmultiwalledcarbonnanotubeexposure AT castranovavincent differentialgeneregulationinhumansmallairwayepithelialcellsgrowninmonocultureversuscoculturewithhumanmicrovascularendothelialcellsfollowingmultiwalledcarbonnanotubeexposure AT qianyong differentialgeneregulationinhumansmallairwayepithelialcellsgrowninmonocultureversuscoculturewithhumanmicrovascularendothelialcellsfollowingmultiwalledcarbonnanotubeexposure AT guonancyl differentialgeneregulationinhumansmallairwayepithelialcellsgrowninmonocultureversuscoculturewithhumanmicrovascularendothelialcellsfollowingmultiwalledcarbonnanotubeexposure |