Cargando…
An algorithm for learning shape and appearance models without annotations
This paper presents a framework for automatically learning shape and appearance models for medical (and certain other) images. The algorithm was developed with the aim of eventually enabling distributed privacy-preserving analysis of brain image data, such that shared information (shape and appearan...
Autores principales: | Ashburner, John, Brudfors, Mikael, Bronik, Kevin, Balbastre, Yaël |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6554617/ https://www.ncbi.nlm.nih.gov/pubmed/31096134 http://dx.doi.org/10.1016/j.media.2019.04.008 |
Ejemplares similares
-
Factorisation-Based Image Labelling
por: Yan, Yu, et al.
Publicado: (2022) -
Model-based multi-parameter mapping
por: Balbastre, Yaël, et al.
Publicado: (2021) -
Correcting inter‐scan motion artifacts in quantitative R
(1) mapping at 7T
por: Balbastre, Yaël, et al.
Publicado: (2022) -
Learning from multiple annotators for medical image segmentation
por: Zhang, Le, et al.
Publicado: (2023) -
Predicting mortality in acutely hospitalised older patients: the impact of model dimensionality
por: Tsui, Alex, et al.
Publicado: (2023)