Cargando…
Diagnosis of Alzheimer’s Disease via Multi-Modality 3D Convolutional Neural Network
Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases. In the last decade, studies on AD diagnosis has attached great significance to artificial intelligence-based diagnostic algorithms. Among the diverse modalities of imaging data, T1-weighted MR and FDG-PET are widely used...
Autores principales: | Huang, Yechong, Xu, Jiahang, Zhou, Yuncheng, Tong, Tong, Zhuang, Xiahai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6555226/ https://www.ncbi.nlm.nih.gov/pubmed/31213967 http://dx.doi.org/10.3389/fnins.2019.00509 |
Ejemplares similares
-
A Fully Automatic Framework for Parkinson’s Disease Diagnosis by Multi-Modality Images
por: Xu, Jiahang, et al.
Publicado: (2019) -
Bidirectional Mapping of Brain MRI and PET With 3D Reversible GAN for the Diagnosis of Alzheimer’s Disease
por: Lin, Wanyun, et al.
Publicado: (2021) -
Multi-Modal Neuroimaging Neural Network-Based Feature Detection for Diagnosis of Alzheimer’s Disease
por: Meng, Xianglian, et al.
Publicado: (2022) -
Convolutional Neural Networks-Based MRI Image Analysis for the Alzheimer’s Disease Prediction From Mild Cognitive Impairment
por: Lin, Weiming, et al.
Publicado: (2018) -
A Multi-Scale Densely Connected Convolutional Neural Network for Automated Thyroid Nodule Classification
por: Wang, Luoyan, et al.
Publicado: (2022)