Cargando…
Enhancing the antibacterial activity of polymyxins using a nonantibiotic drug
Purpose: The rapid emergence of multidrug-resistant (MDR) bacteria and the lack of new therapies to eliminate them poses a major threat to global health. With the alarming rise in antimicrobial resistance (AMR), focus has now shifted to the use of the polymyxin class of antibiotics as the last line...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6555264/ https://www.ncbi.nlm.nih.gov/pubmed/31239720 http://dx.doi.org/10.2147/IDR.S196874 |
_version_ | 1783425123263447040 |
---|---|
author | Krishnamurthy, Malathy Lemmon, Margaret M Falcinelli, Evan M Sandy, Reuel A Dootz, Jennifer N Mott, Tiffany M Rajamani, Sathish Schaecher, Kurt E Duplantier, Allen J Panchal, Rekha G |
author_facet | Krishnamurthy, Malathy Lemmon, Margaret M Falcinelli, Evan M Sandy, Reuel A Dootz, Jennifer N Mott, Tiffany M Rajamani, Sathish Schaecher, Kurt E Duplantier, Allen J Panchal, Rekha G |
author_sort | Krishnamurthy, Malathy |
collection | PubMed |
description | Purpose: The rapid emergence of multidrug-resistant (MDR) bacteria and the lack of new therapies to eliminate them poses a major threat to global health. With the alarming rise in antimicrobial resistance (AMR), focus has now shifted to the use of the polymyxin class of antibiotics as the last line of defense for treatment of Gram-negative infections. Unfortunately, the growing resistance of bacteria against polymyxins is threatening the treatment of MDR infections, necessitating the need for novel strategies. The objective of this study was to determine if combination of polymyxin (polymyxin B or colistin) with a nonantibiotic small molecule AR-12, a celecoxib derivative that is devoid of cyclooxygenase 2 (COX-2) inhibitory activities, can be an effective strategy against polymyxin-resistant MDR bacteria. Methods: Growth inhibition studies, time-kill assays and permeability assays were conducted to investigate the effect of AR-12 on the antibacterial activity of polymyxins. Results: Growth studies were performed on a panel of polymyxin-resistant MDR strains using the combination of AR-12 with either colistin or polymyxin B. The combination treatment had no effect on strains that have inherent polymyxin resistance; however, AR-12 was effective in lowering the minimal inhibitory concentration (MIC) of polymyxins by 4–60-fold in several strains that had acquired polymyxin resistance. Time-kill assays using the combination of AR-12 and colistin with select MDR strains suggest rapid killing and bactericidal activity, while the permeability assays using fluorescently labeled dansylated polymyxin and 1-N-phenylnaphthylamine (NPN) in these MDR strains suggest that AR-12 can potentiate the antibacterial activity of polymyxins by possibly altering the bacterial outer membrane via modification of lipopolysaccharide and thereby improving the uptake of polymyxins. Conclusion: Our studies indicate that the combination of AR-12 and polymyxin is effective in targeting select Gram-negative bacteria that have acquired polymyxin resistance. Further understanding of the mechanism of action of AR-12 will provide new avenues for developing narrow-spectrum antibacterials to target select Gram-negative MDR bacteria. Importantly, our studies show that the use of nonantibiotic small molecules in combination with polymyxins is an attractive strategy to counter the growing resistance of bacteria to polymyxins. |
format | Online Article Text |
id | pubmed-6555264 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Dove |
record_format | MEDLINE/PubMed |
spelling | pubmed-65552642019-06-25 Enhancing the antibacterial activity of polymyxins using a nonantibiotic drug Krishnamurthy, Malathy Lemmon, Margaret M Falcinelli, Evan M Sandy, Reuel A Dootz, Jennifer N Mott, Tiffany M Rajamani, Sathish Schaecher, Kurt E Duplantier, Allen J Panchal, Rekha G Infect Drug Resist Original Research Purpose: The rapid emergence of multidrug-resistant (MDR) bacteria and the lack of new therapies to eliminate them poses a major threat to global health. With the alarming rise in antimicrobial resistance (AMR), focus has now shifted to the use of the polymyxin class of antibiotics as the last line of defense for treatment of Gram-negative infections. Unfortunately, the growing resistance of bacteria against polymyxins is threatening the treatment of MDR infections, necessitating the need for novel strategies. The objective of this study was to determine if combination of polymyxin (polymyxin B or colistin) with a nonantibiotic small molecule AR-12, a celecoxib derivative that is devoid of cyclooxygenase 2 (COX-2) inhibitory activities, can be an effective strategy against polymyxin-resistant MDR bacteria. Methods: Growth inhibition studies, time-kill assays and permeability assays were conducted to investigate the effect of AR-12 on the antibacterial activity of polymyxins. Results: Growth studies were performed on a panel of polymyxin-resistant MDR strains using the combination of AR-12 with either colistin or polymyxin B. The combination treatment had no effect on strains that have inherent polymyxin resistance; however, AR-12 was effective in lowering the minimal inhibitory concentration (MIC) of polymyxins by 4–60-fold in several strains that had acquired polymyxin resistance. Time-kill assays using the combination of AR-12 and colistin with select MDR strains suggest rapid killing and bactericidal activity, while the permeability assays using fluorescently labeled dansylated polymyxin and 1-N-phenylnaphthylamine (NPN) in these MDR strains suggest that AR-12 can potentiate the antibacterial activity of polymyxins by possibly altering the bacterial outer membrane via modification of lipopolysaccharide and thereby improving the uptake of polymyxins. Conclusion: Our studies indicate that the combination of AR-12 and polymyxin is effective in targeting select Gram-negative bacteria that have acquired polymyxin resistance. Further understanding of the mechanism of action of AR-12 will provide new avenues for developing narrow-spectrum antibacterials to target select Gram-negative MDR bacteria. Importantly, our studies show that the use of nonantibiotic small molecules in combination with polymyxins is an attractive strategy to counter the growing resistance of bacteria to polymyxins. Dove 2019-05-27 /pmc/articles/PMC6555264/ /pubmed/31239720 http://dx.doi.org/10.2147/IDR.S196874 Text en © 2019 Krishnamurthy et al. http://creativecommons.org/licenses/by-nc/3.0/ This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). |
spellingShingle | Original Research Krishnamurthy, Malathy Lemmon, Margaret M Falcinelli, Evan M Sandy, Reuel A Dootz, Jennifer N Mott, Tiffany M Rajamani, Sathish Schaecher, Kurt E Duplantier, Allen J Panchal, Rekha G Enhancing the antibacterial activity of polymyxins using a nonantibiotic drug |
title | Enhancing the antibacterial activity of polymyxins using a nonantibiotic drug |
title_full | Enhancing the antibacterial activity of polymyxins using a nonantibiotic drug |
title_fullStr | Enhancing the antibacterial activity of polymyxins using a nonantibiotic drug |
title_full_unstemmed | Enhancing the antibacterial activity of polymyxins using a nonantibiotic drug |
title_short | Enhancing the antibacterial activity of polymyxins using a nonantibiotic drug |
title_sort | enhancing the antibacterial activity of polymyxins using a nonantibiotic drug |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6555264/ https://www.ncbi.nlm.nih.gov/pubmed/31239720 http://dx.doi.org/10.2147/IDR.S196874 |
work_keys_str_mv | AT krishnamurthymalathy enhancingtheantibacterialactivityofpolymyxinsusinganonantibioticdrug AT lemmonmargaretm enhancingtheantibacterialactivityofpolymyxinsusinganonantibioticdrug AT falcinellievanm enhancingtheantibacterialactivityofpolymyxinsusinganonantibioticdrug AT sandyreuela enhancingtheantibacterialactivityofpolymyxinsusinganonantibioticdrug AT dootzjennifern enhancingtheantibacterialactivityofpolymyxinsusinganonantibioticdrug AT motttiffanym enhancingtheantibacterialactivityofpolymyxinsusinganonantibioticdrug AT rajamanisathish enhancingtheantibacterialactivityofpolymyxinsusinganonantibioticdrug AT schaecherkurte enhancingtheantibacterialactivityofpolymyxinsusinganonantibioticdrug AT duplantierallenj enhancingtheantibacterialactivityofpolymyxinsusinganonantibioticdrug AT panchalrekhag enhancingtheantibacterialactivityofpolymyxinsusinganonantibioticdrug |