Cargando…

Application of Finite Element Model in Implant Dentistry: A Systematic Review

FEM was technologically innovated which initially aimed at answering structural analysis difficulties involving Mechanics, Civil and Aeronautical Engineering. FEM basically stands for a numerical model of analyzing stresses as well as distortions in the form of any agreed geometry. There for the sha...

Descripción completa

Detalles Bibliográficos
Autores principales: Reddy, M Sesha, Sundram, Rajasekar, Eid Abdemagyd, Hossam Abdelatty
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6555377/
https://www.ncbi.nlm.nih.gov/pubmed/31198318
http://dx.doi.org/10.4103/JPBS.JPBS_296_18
Descripción
Sumario:FEM was technologically innovated which initially aimed at answering structural analysis difficulties involving Mechanics, Civil and Aeronautical Engineering. FEM basically stands for a numerical model of analyzing stresses as well as distortions in the form of any agreed geometry. There for the shape is discretized into the so-called ‘finite elements’ coupled through nodes. Accuracy of the results is determined by type, planning and total number of elements used for a particular study model. 3-D FE model was designed for in-depth qualitative examination of the relations amongst implant, tooth, periodontal ligament, and bone. Scholarly work equating work reliability, validated with a 3-D modeling suggested that meticulous data can be acquired with respect to stress distribution in bone. Comparative results from 3-D FEA studies showed that 3D FEA, when matched with in-vivo strain gauge measurements were corresponding with clinical outcomes. The aim of this review of literature is to provide an overview to show the application of FEM in (Short) implant dentistry.