Cargando…
Assessing the performance of a suite of machine learning models for daily river water temperature prediction
In this study, different versions of feedforward neural network (FFNN), Gaussian process regression (GPR), and decision tree (DT) models were developed to estimate daily river water temperature using air temperature (T(a)), flow discharge (Q), and the day of year (DOY) as predictors. The proposed mo...
Autores principales: | Zhu, Senlin, Nyarko, Emmanuel Karlo, Hadzima-Nyarko, Marijana, Heddam, Salim, Wu, Shiqiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6555394/ https://www.ncbi.nlm.nih.gov/pubmed/31198649 http://dx.doi.org/10.7717/peerj.7065 |
Ejemplares similares
-
Modelling daily water temperature from air temperature for the Missouri River
por: Zhu, Senlin, et al.
Publicado: (2018) -
Modeling of Compressive Strength of Self-Compacting Rubberized Concrete Using Machine Learning
por: Kovačević, Miljan, et al.
Publicado: (2021) -
Application of Artificial Intelligence Methods for Predicting the Compressive Strength of Self-Compacting Concrete with Class F Fly Ash
por: Kovačević, Miljan, et al.
Publicado: (2022) -
Modelling the Influence of Waste Rubber on Compressive Strength of Concrete by Artificial Neural Networks
por: Hadzima-Nyarko, Marijana, et al.
Publicado: (2019) -
Design of a machine learning model for the precise manufacturing of green cementitious composites modified with waste granite powder
por: Czarnecki, Sławomir, et al.
Publicado: (2022)