Cargando…

Beyond the LSD method for the partial sums of multiplicative functions

The Landau–Selberg–Delange method gives an asymptotic formula for the partial sums of a multiplicative function f whose prime values are [Formula: see text] on average. In the literature, the average is usually taken to be [Formula: see text] with a very strong error term, leading to an asymptotic f...

Descripción completa

Detalles Bibliográficos
Autores principales: Granville, Andrew, Koukoulopoulos, Dimitris
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6555439/
https://www.ncbi.nlm.nih.gov/pubmed/31231166
http://dx.doi.org/10.1007/s11139-018-0119-3
Descripción
Sumario:The Landau–Selberg–Delange method gives an asymptotic formula for the partial sums of a multiplicative function f whose prime values are [Formula: see text] on average. In the literature, the average is usually taken to be [Formula: see text] with a very strong error term, leading to an asymptotic formula for the partial sums with a very strong error term. In practice, the average at the prime values may only be known with a fairly weak error term, and so we explore here how good an estimate this will imply for the partial sums of f, developing new techniques to do so.