Cargando…

Epigenetic clock analysis of human fibroblasts in vitro: effects of hypoxia, donor age, and expression of hTERT and SV40 largeT

Aging is associated with a genome-wide change of DNA methylation (DNAm). "DNAm age" is defined as the predicted chronological age by the age estimator based on DNAm. The estimator is called the epigenetic clock. The molecular mechanism underlining the epigenetic clock is still unknown. Her...

Descripción completa

Detalles Bibliográficos
Autores principales: Matsuyama, Mieko, WuWong, David J., Horvath, Steve, Matsuyama, Shigemi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6555444/
https://www.ncbi.nlm.nih.gov/pubmed/31113906
http://dx.doi.org/10.18632/aging.101955
Descripción
Sumario:Aging is associated with a genome-wide change of DNA methylation (DNAm). "DNAm age" is defined as the predicted chronological age by the age estimator based on DNAm. The estimator is called the epigenetic clock. The molecular mechanism underlining the epigenetic clock is still unknown. Here, we evaluated the effects of hypoxia and two immortalization factors, hTERT and SV40-LargeT (LT), on the DNAm age of human fibroblasts in vitro. We detected the cell division-associated progression of DNAm age after >10 population doublings. Moreover, the progression of DNAm age was slower under hypoxia (1% oxygen) compared to normoxia (21% oxygen), suggesting that oxygen levels determine the speed of the epigenetic aging. We show that the speed of cell division-associated DNAm age progression depends on the chronological age of the cell donor. hTERT expression did not arrest cell division-associated progression of DNAm age in most cells. SV40LT expression produced inconsistent effects, including rejuvenation of DNAm age. Our results show that a) oxygen and the targets of SV40LT (e.g. p53) modulate epigenetic aging rates and b) the chronological age of donor cells determines the speed of mitosis-associated DNAm age progression in daughter cells.