Cargando…

Genetic analyses led to the discovery of a super-active mutant of the RNA polymerase I

Most transcriptional activity of exponentially growing cells is carried out by the RNA Polymerase I (Pol I), which produces a ribosomal RNA (rRNA) precursor. In budding yeast, Pol I is a multimeric enzyme with 14 subunits. Among them, Rpa49 forms with Rpa34 a Pol I-specific heterodimer (homologous t...

Descripción completa

Detalles Bibliográficos
Autores principales: Darrière, Tommy, Pilsl, Michael, Sarthou, Marie-Kerguelen, Chauvier, Adrien, Genty, Titouan, Audibert, Sylvain, Dez, Christophe, Léger-Silvestre, Isabelle, Normand, Christophe, Henras, Anthony K., Kwapisz, Marta, Calvo, Olga, Fernández-Tornero, Carlos, Tschochner, Herbert, Gadal, Olivier
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6555540/
https://www.ncbi.nlm.nih.gov/pubmed/31136569
http://dx.doi.org/10.1371/journal.pgen.1008157
_version_ 1783425173704146944
author Darrière, Tommy
Pilsl, Michael
Sarthou, Marie-Kerguelen
Chauvier, Adrien
Genty, Titouan
Audibert, Sylvain
Dez, Christophe
Léger-Silvestre, Isabelle
Normand, Christophe
Henras, Anthony K.
Kwapisz, Marta
Calvo, Olga
Fernández-Tornero, Carlos
Tschochner, Herbert
Gadal, Olivier
author_facet Darrière, Tommy
Pilsl, Michael
Sarthou, Marie-Kerguelen
Chauvier, Adrien
Genty, Titouan
Audibert, Sylvain
Dez, Christophe
Léger-Silvestre, Isabelle
Normand, Christophe
Henras, Anthony K.
Kwapisz, Marta
Calvo, Olga
Fernández-Tornero, Carlos
Tschochner, Herbert
Gadal, Olivier
author_sort Darrière, Tommy
collection PubMed
description Most transcriptional activity of exponentially growing cells is carried out by the RNA Polymerase I (Pol I), which produces a ribosomal RNA (rRNA) precursor. In budding yeast, Pol I is a multimeric enzyme with 14 subunits. Among them, Rpa49 forms with Rpa34 a Pol I-specific heterodimer (homologous to PAF53/CAST heterodimer in human Pol I), which might be responsible for the specific functions of the Pol I. Previous studies provided insight in the involvement of Rpa49 in initiation, elongation, docking and releasing of Rrn3, an essential Pol I transcription factor. Here, we took advantage of the spontaneous occurrence of extragenic suppressors of the growth defect of the rpa49 null mutant to better understand the activity of Pol I. Combining genetic approaches, biochemical analysis of rRNA synthesis and investigation of the transcription rate at the individual gene scale, we characterized mutated residues of the Pol I as novel extragenic suppressors of the growth defect caused by the absence of Rpa49. When mapped on the Pol I structure, most of these mutations cluster within the jaw-lobe module, at an interface formed by the lobe in Rpa135 and the jaw made up of regions of Rpa190 and Rpa12. In vivo, the suppressor allele RPA135-F301S restores normal rRNA synthesis and increases Pol I density on rDNA genes when Rpa49 is absent. Growth of the Rpa135-F301S mutant is impaired when combined with exosome mutation rrp6Δ and it massively accumulates pre-rRNA. Moreover, Pol I bearing Rpa135-F301S is a hyper-active RNA polymerase in an in vitro tailed-template assay. We conclude that RNA polymerase I can be engineered to produce more rRNA in vivo and in vitro. We propose that the mutated area undergoes a conformational change that supports the DNA insertion into the cleft of the enzyme resulting in a super-active form of Pol I.
format Online
Article
Text
id pubmed-6555540
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-65555402019-06-17 Genetic analyses led to the discovery of a super-active mutant of the RNA polymerase I Darrière, Tommy Pilsl, Michael Sarthou, Marie-Kerguelen Chauvier, Adrien Genty, Titouan Audibert, Sylvain Dez, Christophe Léger-Silvestre, Isabelle Normand, Christophe Henras, Anthony K. Kwapisz, Marta Calvo, Olga Fernández-Tornero, Carlos Tschochner, Herbert Gadal, Olivier PLoS Genet Research Article Most transcriptional activity of exponentially growing cells is carried out by the RNA Polymerase I (Pol I), which produces a ribosomal RNA (rRNA) precursor. In budding yeast, Pol I is a multimeric enzyme with 14 subunits. Among them, Rpa49 forms with Rpa34 a Pol I-specific heterodimer (homologous to PAF53/CAST heterodimer in human Pol I), which might be responsible for the specific functions of the Pol I. Previous studies provided insight in the involvement of Rpa49 in initiation, elongation, docking and releasing of Rrn3, an essential Pol I transcription factor. Here, we took advantage of the spontaneous occurrence of extragenic suppressors of the growth defect of the rpa49 null mutant to better understand the activity of Pol I. Combining genetic approaches, biochemical analysis of rRNA synthesis and investigation of the transcription rate at the individual gene scale, we characterized mutated residues of the Pol I as novel extragenic suppressors of the growth defect caused by the absence of Rpa49. When mapped on the Pol I structure, most of these mutations cluster within the jaw-lobe module, at an interface formed by the lobe in Rpa135 and the jaw made up of regions of Rpa190 and Rpa12. In vivo, the suppressor allele RPA135-F301S restores normal rRNA synthesis and increases Pol I density on rDNA genes when Rpa49 is absent. Growth of the Rpa135-F301S mutant is impaired when combined with exosome mutation rrp6Δ and it massively accumulates pre-rRNA. Moreover, Pol I bearing Rpa135-F301S is a hyper-active RNA polymerase in an in vitro tailed-template assay. We conclude that RNA polymerase I can be engineered to produce more rRNA in vivo and in vitro. We propose that the mutated area undergoes a conformational change that supports the DNA insertion into the cleft of the enzyme resulting in a super-active form of Pol I. Public Library of Science 2019-05-28 /pmc/articles/PMC6555540/ /pubmed/31136569 http://dx.doi.org/10.1371/journal.pgen.1008157 Text en © 2019 Darrière et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Darrière, Tommy
Pilsl, Michael
Sarthou, Marie-Kerguelen
Chauvier, Adrien
Genty, Titouan
Audibert, Sylvain
Dez, Christophe
Léger-Silvestre, Isabelle
Normand, Christophe
Henras, Anthony K.
Kwapisz, Marta
Calvo, Olga
Fernández-Tornero, Carlos
Tschochner, Herbert
Gadal, Olivier
Genetic analyses led to the discovery of a super-active mutant of the RNA polymerase I
title Genetic analyses led to the discovery of a super-active mutant of the RNA polymerase I
title_full Genetic analyses led to the discovery of a super-active mutant of the RNA polymerase I
title_fullStr Genetic analyses led to the discovery of a super-active mutant of the RNA polymerase I
title_full_unstemmed Genetic analyses led to the discovery of a super-active mutant of the RNA polymerase I
title_short Genetic analyses led to the discovery of a super-active mutant of the RNA polymerase I
title_sort genetic analyses led to the discovery of a super-active mutant of the rna polymerase i
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6555540/
https://www.ncbi.nlm.nih.gov/pubmed/31136569
http://dx.doi.org/10.1371/journal.pgen.1008157
work_keys_str_mv AT darrieretommy geneticanalysesledtothediscoveryofasuperactivemutantofthernapolymerasei
AT pilslmichael geneticanalysesledtothediscoveryofasuperactivemutantofthernapolymerasei
AT sarthoumariekerguelen geneticanalysesledtothediscoveryofasuperactivemutantofthernapolymerasei
AT chauvieradrien geneticanalysesledtothediscoveryofasuperactivemutantofthernapolymerasei
AT gentytitouan geneticanalysesledtothediscoveryofasuperactivemutantofthernapolymerasei
AT audibertsylvain geneticanalysesledtothediscoveryofasuperactivemutantofthernapolymerasei
AT dezchristophe geneticanalysesledtothediscoveryofasuperactivemutantofthernapolymerasei
AT legersilvestreisabelle geneticanalysesledtothediscoveryofasuperactivemutantofthernapolymerasei
AT normandchristophe geneticanalysesledtothediscoveryofasuperactivemutantofthernapolymerasei
AT henrasanthonyk geneticanalysesledtothediscoveryofasuperactivemutantofthernapolymerasei
AT kwapiszmarta geneticanalysesledtothediscoveryofasuperactivemutantofthernapolymerasei
AT calvoolga geneticanalysesledtothediscoveryofasuperactivemutantofthernapolymerasei
AT fernandeztornerocarlos geneticanalysesledtothediscoveryofasuperactivemutantofthernapolymerasei
AT tschochnerherbert geneticanalysesledtothediscoveryofasuperactivemutantofthernapolymerasei
AT gadalolivier geneticanalysesledtothediscoveryofasuperactivemutantofthernapolymerasei