Cargando…

Normal stress difference–driven particle focusing in nanoparticle colloidal dispersion

Colloidal dispersion has elastic properties due to Brownian relaxation process. However, experimental evidence for the elastic properties, characterized with normal stress differences, is elusive in shearing colloidal dispersion, particularly at low Péclet numbers (Pe < 1). Here, we report that s...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Bookun, Lee, Sung Sik, Yoo, Tae Hyeon, Kim, Sunhyung, Kim, So Youn, Choi, Soo-Hyung, Kim, Ju Min
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6555624/
https://www.ncbi.nlm.nih.gov/pubmed/31187058
http://dx.doi.org/10.1126/sciadv.aav4819
Descripción
Sumario:Colloidal dispersion has elastic properties due to Brownian relaxation process. However, experimental evidence for the elastic properties, characterized with normal stress differences, is elusive in shearing colloidal dispersion, particularly at low Péclet numbers (Pe < 1). Here, we report that single micrometer-sized polystyrene (PS) beads, suspended in silica nanoparticle dispersion (8 nm radius; 22%, v/v), laterally migrate and form a tightly focused stream by the normal stress differences, generated in pressure-driven microtube flow at low Pe. The nanoparticle dispersion was expected to behave as a Newtonian fluid because of its ultrashort relaxation time (2 μs), but large shear strain experienced by the PS beads causes the notable non-Newtonian behavior. We demonstrate that the unique rheological properties of the nanoparticle dispersion generate the secondary flow in perpendicular to mainstream in a noncircular conduit, and the elastic properties of blood plasma–constituting protein solutions are elucidated by the colloidal dynamics of protein molecules.