Cargando…

Malaria Parasite Translocon Structure and Mechanism of Effector Export

The putative Plasmodium Translocon of Exported Proteins (PTEX) is essential for transport of malarial effector proteins across a parasite-encasing vacuolar membrane into host erythrocytes, but the mechanism of this process remains unknown. Here we show PTEX is a bona fide translocon by determining n...

Descripción completa

Detalles Bibliográficos
Autores principales: Ho, Chi-Min, Beck, Josh R., Lai, Mason, Cui, Yanxiang, Goldberg, Daniel E., Egea, Pascal F., Hong Zhou, Z.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6555636/
https://www.ncbi.nlm.nih.gov/pubmed/30150771
http://dx.doi.org/10.1038/s41586-018-0469-4
_version_ 1783425191096877056
author Ho, Chi-Min
Beck, Josh R.
Lai, Mason
Cui, Yanxiang
Goldberg, Daniel E.
Egea, Pascal F.
Hong Zhou, Z.
author_facet Ho, Chi-Min
Beck, Josh R.
Lai, Mason
Cui, Yanxiang
Goldberg, Daniel E.
Egea, Pascal F.
Hong Zhou, Z.
author_sort Ho, Chi-Min
collection PubMed
description The putative Plasmodium Translocon of Exported Proteins (PTEX) is essential for transport of malarial effector proteins across a parasite-encasing vacuolar membrane into host erythrocytes, but the mechanism of this process remains unknown. Here we show PTEX is a bona fide translocon by determining near-atomic resolution cryoEM structures of the endogenous PTEX core complex of EXP2, PTEX150 and HSP101, isolated from Plasmodium falciparum in the engaged and resetting states of endogenous cargo translocation with CRISPR/Cas9-engineered epitope tags. EXP2 and PTEX150 interdigitate to form a static, funnel-shaped pseudo-sevenfold symmetric protein-conducting channel spanning the vacuolar membrane. Tethered above this funnel, the spiral-shaped AAA+ HSP101 hexamer undergoes a dramatic compaction that allows three of six tyrosine-bearing pore loops lining the HSP101 channel to dissociate from the cargo, resetting the translocon for the next threading cycle. Our work reveals the mechanism of P. falciparum effector export, enabling structure-based design of drugs targeting this unique translocon.
format Online
Article
Text
id pubmed-6555636
institution National Center for Biotechnology Information
language English
publishDate 2018
record_format MEDLINE/PubMed
spelling pubmed-65556362019-06-07 Malaria Parasite Translocon Structure and Mechanism of Effector Export Ho, Chi-Min Beck, Josh R. Lai, Mason Cui, Yanxiang Goldberg, Daniel E. Egea, Pascal F. Hong Zhou, Z. Nature Article The putative Plasmodium Translocon of Exported Proteins (PTEX) is essential for transport of malarial effector proteins across a parasite-encasing vacuolar membrane into host erythrocytes, but the mechanism of this process remains unknown. Here we show PTEX is a bona fide translocon by determining near-atomic resolution cryoEM structures of the endogenous PTEX core complex of EXP2, PTEX150 and HSP101, isolated from Plasmodium falciparum in the engaged and resetting states of endogenous cargo translocation with CRISPR/Cas9-engineered epitope tags. EXP2 and PTEX150 interdigitate to form a static, funnel-shaped pseudo-sevenfold symmetric protein-conducting channel spanning the vacuolar membrane. Tethered above this funnel, the spiral-shaped AAA+ HSP101 hexamer undergoes a dramatic compaction that allows three of six tyrosine-bearing pore loops lining the HSP101 channel to dissociate from the cargo, resetting the translocon for the next threading cycle. Our work reveals the mechanism of P. falciparum effector export, enabling structure-based design of drugs targeting this unique translocon. 2018-08-27 2018-09 /pmc/articles/PMC6555636/ /pubmed/30150771 http://dx.doi.org/10.1038/s41586-018-0469-4 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Ho, Chi-Min
Beck, Josh R.
Lai, Mason
Cui, Yanxiang
Goldberg, Daniel E.
Egea, Pascal F.
Hong Zhou, Z.
Malaria Parasite Translocon Structure and Mechanism of Effector Export
title Malaria Parasite Translocon Structure and Mechanism of Effector Export
title_full Malaria Parasite Translocon Structure and Mechanism of Effector Export
title_fullStr Malaria Parasite Translocon Structure and Mechanism of Effector Export
title_full_unstemmed Malaria Parasite Translocon Structure and Mechanism of Effector Export
title_short Malaria Parasite Translocon Structure and Mechanism of Effector Export
title_sort malaria parasite translocon structure and mechanism of effector export
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6555636/
https://www.ncbi.nlm.nih.gov/pubmed/30150771
http://dx.doi.org/10.1038/s41586-018-0469-4
work_keys_str_mv AT hochimin malariaparasitetransloconstructureandmechanismofeffectorexport
AT beckjoshr malariaparasitetransloconstructureandmechanismofeffectorexport
AT laimason malariaparasitetransloconstructureandmechanismofeffectorexport
AT cuiyanxiang malariaparasitetransloconstructureandmechanismofeffectorexport
AT goldbergdaniele malariaparasitetransloconstructureandmechanismofeffectorexport
AT egeapascalf malariaparasitetransloconstructureandmechanismofeffectorexport
AT hongzhouz malariaparasitetransloconstructureandmechanismofeffectorexport