Cargando…
Benchmark on a large cohort for sleep-wake classification with machine learning techniques
Accurately measuring sleep and its quality with polysomnography (PSG) is an expensive task. Actigraphy, an alternative, has been proven cheap and relatively accurate. However, the largest experiments conducted to date, have had only hundreds of participants. In this work, we processed the data of th...
Autores principales: | Palotti, Joao, Mall, Raghvendra, Aupetit, Michael, Rueschman, Michael, Singh, Meghna, Sathyanarayana, Aarti, Taheri, Shahrad, Fernandez-Luque, Luis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6555808/ https://www.ncbi.nlm.nih.gov/pubmed/31304396 http://dx.doi.org/10.1038/s41746-019-0126-9 |
Ejemplares similares
-
The future of sleep health: a data-driven revolution in sleep science and medicine
por: Perez-Pozuelo, Ignacio, et al.
Publicado: (2020) -
Sleep Quality Prediction From Wearable Data Using Deep Learning
por: Sathyanarayana, Aarti, et al.
Publicado: (2016) -
Correction of: Sleep Quality Prediction From Wearable Data Using Deep Learning
por: Sathyanarayana, Aarti, et al.
Publicado: (2016) -
A Participatory Design Approach to Develop Visualization of Wearable Actigraphy Data for Health Care Professionals: Case Study in Qatar
por: Khowaja, Kamran, et al.
Publicado: (2022) -
COUSCOus: improved protein contact prediction using an empirical Bayes covariance estimator
por: Rawi, Reda, et al.
Publicado: (2016)