Cargando…
Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer
For prostate cancer patients, the Gleason score is one of the most important prognostic factors, potentially determining treatment independent of the stage. However, Gleason scoring is based on subjective microscopic examination of tumor morphology and suffers from poor reproducibility. Here we pres...
Autores principales: | Nagpal, Kunal, Foote, Davis, Liu, Yun, Chen, Po-Hsuan Cameron, Wulczyn, Ellery, Tan, Fraser, Olson, Niels, Smith, Jenny L., Mohtashamian, Arash, Wren, James H., Corrado, Greg S., MacDonald, Robert, Peng, Lily H., Amin, Mahul B., Evans, Andrew J., Sangoi, Ankur R., Mermel, Craig H., Hipp, Jason D., Stumpe, Martin C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6555810/ https://www.ncbi.nlm.nih.gov/pubmed/31304394 http://dx.doi.org/10.1038/s41746-019-0112-2 |
Ejemplares similares
-
Publisher Correction: Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer
por: Nagpal, Kunal, et al.
Publicado: (2019) -
Development and Validation of a Deep Learning Algorithm for Gleason Grading of Prostate Cancer From Biopsy Specimens
por: Nagpal, Kunal, et al.
Publicado: (2020) -
Predicting prostate cancer specific-mortality with artificial intelligence-based Gleason grading
por: Wulczyn, Ellery, et al.
Publicado: (2021) -
Deep learning models for histologic grading of breast cancer and association with disease prognosis
por: Jaroensri, Ronnachai, et al.
Publicado: (2022) -
Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge
por: Bulten, Wouter, et al.
Publicado: (2022)