Cargando…

Population structure, demographic history and local adaptation of the grass carp

BACKGROUND: Genetic diversity within a species reflects population evolution, ecology, and ability to adapt. Genome-wide population surveys of both natural and introduced populations provide insights into genetic diversity, the evolutionary processes and the genetic basis underlying local adaptation...

Descripción completa

Detalles Bibliográficos
Autores principales: Shen, Yubang, Wang, Le, Fu, Jianjun, Xu, Xiaoyan, Yue, Gen Hua, Li, Jiale
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6555922/
https://www.ncbi.nlm.nih.gov/pubmed/31174480
http://dx.doi.org/10.1186/s12864-019-5872-1
Descripción
Sumario:BACKGROUND: Genetic diversity within a species reflects population evolution, ecology, and ability to adapt. Genome-wide population surveys of both natural and introduced populations provide insights into genetic diversity, the evolutionary processes and the genetic basis underlying local adaptation. Grass carp is the most important freshwater foodfish species for food and water weed control. However, there is as yet no overall picture on genetic variations and population structure of this species, which is important for its aquaculture. RESULTS: We used 43,310 SNPs to infer the population structure, evidence of local adaptation and sources of introduction. The overall genetic differentiation of this species was low. The native populations were differentiated into three genetic clusters, corresponding to the Yangtze, Pearl and Heilongjiang River Systems, respectively. The populations in Malaysia, India and Nepal were introduced from both the Yangtze and Pearl River Systems. Loci and genes involved in putative local selection for native locations were identified. Evidence of both positive and balancing selection was found in the introduced locations. Genes associated with loci under putative selection were involved in many biological functions. Outlier loci were grouped into clusters as genomic islands within some specific genomic regions, which likely agrees with the divergence hitchhiking scenario of divergence-with-gene-flow. CONCLUSIONS: This study, for the first time, sheds novel insights on the population differentiation of the grass carp, genetics of its strong ability in adaption to diverse environments and sources of some introduced grass carp populations. Our data also suggests that the natural populations of the grass carp have been affected by the aquaculture besides neutral and adaptive forces. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12864-019-5872-1) contains supplementary material, which is available to authorized users.